Suppr超能文献

分层异质图中的联合立场和谣言检测。

Joint Stance and Rumor Detection in Hierarchical Heterogeneous Graph.

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Jun;33(6):2530-2542. doi: 10.1109/TNNLS.2021.3114027. Epub 2022 Jun 1.

Abstract

Recently, large volumes of false or unverified information (e.g., fake news and rumors) appear frequently in emerging social media, which are often discussed on a large scale and widely disseminated, causing bad consequences. Many studies on rumor detection indicate that the stance distribution of posts is closely related to the rumor veracity. However, these two tasks are generally considered separately or just using a shared encoder/layer via multitask learning, without exploring the more profound correlation between them. In particular, the performance of existing methods relies heavily on the quality of hand-crafted features and the quantity of labeled data, which is not conducive to early rumor detection and few-shot detection. In this article, we construct a hierarchical heterogeneous graph by associating posts containing the same high-frequency words to facilitate the feature cross-topic propagation and jointly formulate stance and rumor detection as multistage classification tasks. To realize the updating of node embeddings jointly driven by stance and rumor detection, we propose a multigraph neural network framework, which can more flexibly capture the attribute and structure information of the context. Experiments on real datasets collected from Twitter and Reddit show that our method outperforms state-of-the-art by a large margin on both stance and rumor detection. And the experimental results also show that our method has better interpretability and requires less labeled data.

摘要

最近,新兴社交媒体中经常出现大量虚假或未经证实的信息(例如,假新闻和谣言),这些信息经常被大规模讨论和广泛传播,造成了不良后果。许多谣言检测研究表明,帖子的立场分布与谣言的真实性密切相关。然而,这两个任务通常是分开考虑的,或者只是通过多任务学习共享编码器/层,而没有探索它们之间更深刻的相关性。特别是,现有方法的性能严重依赖于手工制作特征的质量和标记数据的数量,这不利于早期的谣言检测和少样本检测。在本文中,我们通过将包含相同高频词的帖子关联起来构建一个层次化的异构图,以促进特征跨主题传播,并将立场和谣言检测联合制定为多阶段分类任务。为了实现由立场和谣言检测共同驱动的节点嵌入更新,我们提出了一种多图神经网络框架,该框架可以更灵活地捕获上下文的属性和结构信息。在从 Twitter 和 Reddit 上收集的真实数据集上的实验表明,我们的方法在立场和谣言检测上都显著优于最先进的方法。实验结果还表明,我们的方法具有更好的可解释性,并且需要更少的标记数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验