Suppr超能文献

将自发手语分解为基本动作:基于主成分分析的方法。

Decomposing spontaneous sign language into elementary movements: A principal component analysis-based approach.

机构信息

Université Paris-Saclay, CNRS, LISN, Orsay, France.

Université Paris-Saclay, CIAMS, Institut Universitaire de France, Orsay, France.

出版信息

PLoS One. 2021 Oct 29;16(10):e0259464. doi: 10.1371/journal.pone.0259464. eCollection 2021.

Abstract

Sign Language (SL) is a continuous and complex stream of multiple body movement features. That raises the challenging issue of providing efficient computational models for the description and analysis of these movements. In the present paper, we used Principal Component Analysis (PCA) to decompose SL motion into elementary movements called principal movements (PMs). PCA was applied to the upper-body motion capture data of six different signers freely producing discourses in French Sign Language. Common PMs were extracted from the whole dataset containing all signers, while individual PMs were extracted separately from the data of individual signers. This study provides three main findings: (1) although the data were not synchronized in time across signers and discourses, the first eight common PMs contained 94.6% of the variance of the movements; (2) the number of PMs that represented 94.6% of the variance was nearly the same for individual as for common PMs; (3) the PM subspaces were highly similar across signers. These results suggest that upper-body motion in unconstrained continuous SL discourses can be described through the dynamic combination of a reduced number of elementary movements. This opens up promising perspectives toward providing efficient automatic SL processing tools based on heavy mocap datasets, in particular for automatic recognition and generation.

摘要

手语 (SL) 是一种由多个身体运动特征组成的连续而复杂的流。这就提出了一个具有挑战性的问题,即如何为这些运动的描述和分析提供高效的计算模型。在本文中,我们使用主成分分析 (PCA) 将 SL 运动分解为称为主运动 (PM) 的基本运动。PCA 应用于六位不同的手语者自由产生法语手语话语的上半身运动捕捉数据。从包含所有手语者的整个数据集提取常见 PM,而从个别手语者的数据中分别提取个别 PM。本研究提供了三个主要发现:(1) 尽管数据在时间上没有在不同的手语者和话语之间进行同步,但前八个常见 PM 包含了运动的 94.6%的方差;(2) 代表 94.6%方差的 PM 数量对于个体 PM 和常见 PM 几乎相同;(3) PM 子空间在不同的手语者之间非常相似。这些结果表明,不受限制的连续 SL 话语中的上半身运动可以通过减少数量的基本运动的动态组合来描述。这为基于大量运动捕捉数据集提供高效的自动 SL 处理工具开辟了广阔的前景,特别是在自动识别和生成方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d3/8555838/8acaf7a960fb/pone.0259464.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验