Suppr超能文献

基于深度学习的磁共振重建算法改善周围神经可视化。

Improvement of peripheral nerve visualization using a deep learning-based MR reconstruction algorithm.

机构信息

Department of Radiology and Imaging, Hospital for Special Surgery, 535 E 70(th) Street, New York, NY 10021, United States of America.

Department of Biostatistics, Hospital for Special Surgery, 535 E 70(th) Street, New York, NY 10021, United States of America.

出版信息

Magn Reson Imaging. 2022 Jan;85:186-192. doi: 10.1016/j.mri.2021.10.038. Epub 2021 Oct 29.

Abstract

OBJECTIVE

To assess a new deep learning-based MR reconstruction method, "DLRecon," for clinical evaluation of peripheral nerves.

METHODS

Sixty peripheral nerves were prospectively evaluated in 29 patients (mean age: 49 ± 16 years, 17 female) undergoing standard-of-care (SOC) MR neurography for clinically suspected neuropathy. SOC-MRIs and DLRecon-MRIs were obtained through conventional and DLRecon reconstruction methods, respectively. Two radiologists randomly evaluated blinded images for outer epineurium conspicuity, fascicular architecture visualization, pulsation artifact, ghosting artifact, and bulk motion.

RESULTS

DLRecon-MRIs were likely to score better than SOC-MRIs for outer epineurium conspicuity (OR = 1.9, p = 0.007) and visualization of fascicular architecture (OR = 1.8, p < 0.001) and were likely to score worse for ghosting (OR = 2.8, p = 0.004) and pulsation artifacts (OR = 1.6, p = 0.004). There was substantial to almost-perfect inter-reconstruction method agreement (AC = 0.73-1.00) and fair to almost-perfect interrater agreement (AC = 0.34-0.86) for all features evaluated. DLRecon-MRI had improved interrater agreement for outer epineurium conspicuity (AC = 0.71, substantial agreement) compared to SOC-MRIs (AC = 0.34, fair agreement). In >80% of images, the radiologist correctly identified an image as SOC- or DLRecon-MRI.

DISCUSSION

Outer epineurium and fascicular architecture conspicuity, two key morphological features critical to evaluating a nerve injury, were improved in DLRecon-MRIs compared to SOC-MRIs. Although pulsation and ghosting artifacts increased in DLRecon images, image interpretation was unaffected.

摘要

目的

评估一种新的基于深度学习的磁共振重建方法(DLRecon)在周围神经临床评估中的应用。

方法

对 29 例(平均年龄:49±16 岁,17 名女性)疑似神经病变的患者进行标准护理(SOC)磁共振神经成像检查,前瞻性评估 60 条周围神经。SOC-MRI 和 DLRecon-MRI 分别通过传统和 DLRecon 重建方法获得。两名放射科医生对盲法图像的外神经外膜显影、束状结构可视化、搏动伪影、重影伪影和大体运动进行随机评估。

结果

与 SOC-MRI 相比,DLRecon-MRI 在外神经外膜显影(OR=1.9,p=0.007)和束状结构可视化(OR=1.8,p<0.001)方面的评分可能更高,而在重影(OR=2.8,p=0.004)和搏动伪影(OR=1.6,p=0.004)方面的评分可能更低。所有评估特征的重建方法间一致性均为高度至极好(AC=0.73-1.00),观察者间一致性均为中度至极好(AC=0.34-0.86)。与 SOC-MRI 相比,DLRecon-MRI 在外神经外膜显影方面的观察者间一致性得到改善(AC=0.71,高度一致)。在>80%的图像中,放射科医生可以正确识别图像是 SOC-MRI 还是 DLRecon-MRI。

讨论

与 SOC-MRI 相比,DLRecon-MRI 在外神经和束状结构显影方面得到改善,这是评估神经损伤的两个关键形态学特征。尽管 DLRecon 图像中的搏动伪影和重影伪影增加,但图像解读未受影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验