Department of Critical Care Medicine, Zibo Central Hospital, No.54 West Gongqingtuan Road, Zhangdian District, Zibo City, Shandong Province, China.
Department of Laboratory Medicine, Zibo Central Hospital, No.54 West Gongqingtuan Road, Zhangdian District, Zibo City, Shandong Province, China.
Comput Methods Programs Biomed. 2021 Nov;212:106467. doi: 10.1016/j.cmpb.2021.106467. Epub 2021 Oct 13.
Computed tomography (CT) examination plays an important role in screening suspected and confirmed patients in pneumocystis carinii pneumonia (PCP), and the efficient acquisition of high-quality medical CT images is essential for the clinical application of computer-aided diagnosis technology. Therefore, improving the resolution of CT images of pneumonia is a very important task.
Aiming at the problem of how to recover the texture details of the reconstructed PCP CT super-resolution image, we propose the image super-resolution reconstruction model based on self-attention generation adversarial network (SAGAN). In the SAGAN algorithm, a generator based on self-attention mechanism and residual module is used to transform a low-resolution image into a super-resolution image. A discriminator based on depth convolution network tries to distinguish the difference between the reconstructed super-resolution image and the real super-resolution image. In terms of loss function construction, on the one hand, the Charbonnier content loss function is used to improve the accuracy of image reconstruction, and on the other hand, the feature value before activation of the pre-trained VGGNet is used to calculate the perceptual loss to achieve accurate texture detail reconstruction of super-resolution images.
Experimental results show that our SAGAN algorithm is superior to other state-of-the-art algorithms in both peak signal-to-noise ratio (PSNR) and structural similarity score (SSIM). Specifically, our SAGAN method can obtain 31.94 dB which is 1.53 dB better than SRGAN on Set5 dataset for 4 enlargements.
Our SAGAN method can reconstruct more realistic PCP CT images with clear texture, which can help experts diagnose the condition of PCP.
计算机断层扫描(CT)检查在卡氏肺孢子虫肺炎(PCP)疑似和确诊患者的筛查中发挥着重要作用,获取高质量的医学 CT 图像对于计算机辅助诊断技术的临床应用至关重要。因此,提高肺炎 CT 图像的分辨率是一项非常重要的任务。
针对如何恢复重建的 PCP CT 超分辨率图像的纹理细节问题,我们提出了基于自注意力生成对抗网络(SAGAN)的图像超分辨率重建模型。在 SAGAN 算法中,使用基于自注意力机制和残差模块的生成器将低分辨率图像转换为超分辨率图像。基于深度卷积网络的判别器试图区分重建的超分辨率图像和真实的超分辨率图像之间的差异。在损失函数的构建方面,一方面使用 Charbonnier 内容损失函数提高图像重建的准确性,另一方面使用预训练的 VGGNet 激活前的特征值计算感知损失,以实现超分辨率图像的精确纹理细节重建。
实验结果表明,我们的 SAGAN 算法在峰值信噪比(PSNR)和结构相似性得分(SSIM)方面均优于其他最先进的算法。具体来说,我们的 SAGAN 方法在 Set5 数据集上进行 4 倍放大时可以获得 31.94dB,比 SRGAN 高出 1.53dB。
我们的 SAGAN 方法可以重建出更逼真的具有清晰纹理的 PCP CT 图像,这有助于专家诊断 PCP 的病情。