Andraud V, Sousa Martins R, Zaepffel C, Landfried R, Testé P
DPHY, ONERA, Université Paris Saclay, F-91123 Palaiseau, France.
Laboratoire GeePs, CNRS UMR8507, Université Paris Saclay, CentraleSupélec, 91190 Gif-sur-Yvette, France.
Rev Sci Instrum. 2021 Oct 1;92(10):104709. doi: 10.1063/5.0060247.
When aircraft are impacted by lightning strikes, structural fuselage and components are stressed by electric and thermo-mechanical constraints which impose a need for reliable experimental test benches to design accurate and enhanced lightning protections. The aim of this work is to investigate, design, and compare different topologies of DC high-current generators in order to experimentally reproduce the continuous lightning current waveform component applied to produce an electric arc up to 1 m long. An electrical model of a standard lightning C*-waveform for a 1 m long arc is set, leading to an equivalent resistor varying from 4 to 8 Ω. This model enables a theoretical comparison between the DC/DC converters' Buck and Buck-boost topologies to generate such a current-regulated waveform through a load using a capacitor bank and applying a minimum initial stored energy criterion. The experimental implementations of Buck and Buck-boost configurations are designed and tested. Optimizations about the accuracy of the current regulation through the feedback loop and the respect of components' operating electrical and power parameters are presented. In particular, the implementation of a snubber filter and a frequency control of the switching operations, which are mandatory elements in the operation of DC converters, are described to prevent the circuit from damaging initiated by transient overvoltage peaks. Both Buck and Buck-boost configurations are experimentally implemented to generate a standard C* waveform through a 4 Ω resistor and the Buck configuration proves the ability to generate electric arcs up to 1.5 m respecting the standard aeronautic waveform of lightning.
当飞机受到雷击时,机身结构和部件会受到电和热机械约束的应力作用,这就需要可靠的实验测试台来设计精确且增强的雷电防护措施。这项工作的目的是研究、设计和比较不同拓扑结构的直流大电流发生器,以便通过实验再现用于产生长达1米电弧的持续雷电电流波形分量。建立了一个用于1米长电弧的标准雷电C波形的电气模型,得出等效电阻在4至8Ω之间变化。该模型能够在直流/直流转换器的降压和升压拓扑之间进行理论比较,以便通过使用电容器组的负载并应用最小初始存储能量准则来生成这种电流调节波形。设计并测试了降压和升压配置的实验实施方案。提出了关于通过反馈回路进行电流调节的精度以及对组件工作电气和功率参数的遵守情况的优化措施。特别是,描述了缓冲滤波器的实施和开关操作的频率控制,这是直流转换器运行中的强制性元件,以防止电路因瞬态过电压峰值而损坏。降压和升压配置均通过实验实现,以通过4Ω电阻器生成标准C波形,并且降压配置证明了能够在符合标准航空雷电波形的情况下产生长达1.5米的电弧。