Suppr超能文献

RA-SIFA:结合并行注意力模块和残差注意力单元的无监督域自适应多模态心脏分割网络

RA-SIFA: Unsupervised domain adaptation multi-modality cardiac segmentation network combining parallel attention module and residual attention unit.

作者信息

Yang Tiejun, Cui Xiaojuan, Bai Xinhao, Li Lei, Gong Yuehong

机构信息

Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Ministry of Education, Zhengzhou, China.

School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, China.

出版信息

J Xray Sci Technol. 2021;29(6):1065-1078. doi: 10.3233/XST-210966.

Abstract

BACKGROUND

Convolutional neural network has achieved a profound effect on cardiac image segmentation. The diversity of medical imaging equipment brings the challenge of domain shift for cardiac image segmentation.

OBJECTIVE

In order to solve the domain shift existed in multi-modality cardiac image segmentation, this study aims to investigate and test an unsupervised domain adaptation network RA-SIFA, which combines a parallel attention module (PAM) and residual attention unit (RAU).

METHODS

First, the PAM is introduced in the generator of RA-SIFA to fuse global information, which can reduce the domain shift from the respect of image alignment. Second, the shared encoder adopts the RAU, which has residual block based on the spatial attention module to alleviate the problem that the convolution layer is insensitive to spatial position. Therefore, RAU enables to further reduce the domain shift from the respect of feature alignment. RA-SIFA model can realize the unsupervised domain adaption (UDA) through combining the image and feature alignment, and then solve the domain shift of cardiac image segmentation in a complementary manner.

RESULTS

The model is evaluated using MM-WHS2017 datasets. Compared with SIFA, the Dice of our new RA-SIFA network is improved by 8.4%and 3.2%in CT and MR images, respectively, while, the average symmetric surface distance (ASD) is reduced by 3.4 and 0.8mm in CT and MR images, respectively.

CONCLUSION

The study results demonstrate that our new RA-SIFA network can effectively improve the accuracy of whole-heart segmentation from CT and MR images.

摘要

背景

卷积神经网络在心脏图像分割方面取得了显著成效。医学成像设备的多样性给心脏图像分割带来了领域偏移的挑战。

目的

为了解决多模态心脏图像分割中存在的领域偏移问题,本研究旨在研究和测试一种无监督领域自适应网络RA-SIFA,该网络结合了并行注意力模块(PAM)和残差注意力单元(RAU)。

方法

首先,在RA-SIFA的生成器中引入PAM以融合全局信息,这可以从图像对齐的角度减少领域偏移。其次,共享编码器采用RAU,其具有基于空间注意力模块的残差块,以缓解卷积层对空间位置不敏感的问题。因此,RAU能够从特征对齐的角度进一步减少领域偏移。RA-SIFA模型可以通过结合图像和特征对齐来实现无监督领域自适应(UDA),进而以互补的方式解决心脏图像分割的领域偏移问题。

结果

使用MM-WHS2017数据集对该模型进行评估。与SIFA相比,我们新的RA-SIFA网络在CT和MR图像中的Dice系数分别提高了8.4%和3.2%,同时,在CT和MR图像中的平均对称表面距离(ASD)分别减少了3.4和0.8mm。

结论

研究结果表明,我们新的RA-SIFA网络可以有效提高从CT和MR图像中进行全心分割的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验