Suppr超能文献

基于优化的人工神经网络拟合水相吸附体系等温线模型参数。

Optimization-based artificial neural networks to fit the isotherm models parameters of aqueous-phase adsorption systems.

机构信息

Chemical Engineering Department, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS, 97105-900, Brazil.

出版信息

Environ Sci Pollut Res Int. 2022 Nov;29(53):79798-79807. doi: 10.1007/s11356-021-17244-5. Epub 2021 Oct 31.

Abstract

An artificial neural network (ANN) hybrid structure was proposed that, unlike the standard ANN structure optimization, allows the fit of several adsorption curves simultaneously by indirectly minimizing the real output error. To model a case study of 3-aminophenol adsorption phenomena onto avocado seed activated carbon, a hybrid ANN was applied to fit the parameters of the Langmuir and Sips isotherm models. Network weights and biases were optimized with two different methods: particle swarm optimization (PSO) and genetic algorithm (GA), due to their good convergence in large-scale problems. In addition, the data were also fitted with the Levenberg-Marquardt feedforward optimization method to compare the performance between a standard ANN model and the hybrid model proposed. Results showed that the ANN-isotherm hybrid models with both PSO and GA were able to accurately fit the experimental equilibrium adsorption capacity data using the Sips isotherm model, obtaining Pearson's correlation coefficient (R) of the order of 0.9999 and mean squared error (MSE) around 0.5, very similar to the performance of standard ANN using Levenberg-Marquardt optimization. On the other hand, the results with Langmuir isotherm models were quite inferior in the ANN-isotherm hybrid models with both PSO and GA, with R and MSE of around 0.944 and 4.04 × 10, respectively. The proposed ANN-isotherm hybrid structure was successfully applied to estimate the parameters of adsorption isotherms, reducing the computational demand and the exhausting task of estimating the parameters of each adsorption curve individually.

摘要

提出了一种人工神经网络(ANN)混合结构,与标准 ANN 结构优化不同,它通过间接最小化实际输出误差来同时拟合多条吸附曲线。为了对 3-氨基酚吸附到鳄梨种子活性炭的现象进行案例研究,应用混合 ANN 来拟合 Langmuir 和 Sips 等温模型的参数。由于在大规模问题中具有良好的收敛性,因此使用两种不同的方法:粒子群优化(PSO)和遗传算法(GA)来优化网络权重和偏差。此外,还使用 Levenberg-Marquardt 前馈优化方法拟合数据,以比较标准 ANN 模型和所提出的混合模型之间的性能。结果表明,使用 PSO 和 GA 的 ANN-等温混合模型均能够使用 Sips 等温模型准确拟合实验平衡吸附容量数据,获得 Pearson 相关系数(R)约为 0.9999,平均平方误差(MSE)约为 0.5,与使用 Levenberg-Marquardt 优化的标准 ANN 性能非常相似。另一方面,对于 PSO 和 GA 的 ANN-等温混合模型,使用 Langmuir 等温模型的结果相当差,R 和 MSE 分别约为 0.944 和 4.04×10。成功应用所提出的 ANN-等温混合结构来估计吸附等温线的参数,从而降低了计算需求,并减轻了单独估计每条吸附曲线参数的繁琐任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验