Suppr超能文献

一种具有智能特征和参数选择的新型乳腺癌诊断方案。

A Novel Breast Cancer Diagnosis Scheme With Intelligent Feature and Parameter Selections.

机构信息

Department of Computer Science Engineering, Karunya Insitute of Technology and Sciences, Tamilnadu, India.

Department of Computer Science Engineering, Faculty of Engineering and Technology, M. S. Ramaiah University of Applied Sciences, Bengaluru, India.

出版信息

Comput Methods Programs Biomed. 2022 Feb;214:106432. doi: 10.1016/j.cmpb.2021.106432. Epub 2021 Sep 20.

Abstract

BACKGROUND AND OBJECTIVE

Breast cancer is the most commonly occurring cancer among women, which contributes to the global death rate. The key to increasing the survival rate of affected patients is early diagnosis along with appropriate treatments. Manual methods for breast cancer diagnosis fail due to human errors, inaccurate diagnoses, and are time-consuming when demands are high. Intelligent systems based on Artificial Neural Network (ANN) for automated breast cancer diagnosis are powerful due to their strong decision-making capabilities in complicated cases. Artificial Bee Colony, Artificial Immune System, and Bacterial Foraging Optimization are swarm intelligence algorithms that solve combinatorial optimization problems. This paper proposes two novel hybrid Artificial Bee Colony (ABC) optimization algorithms that overcome the demerits of standard ABC algorithms. First, this paper proposes a hybrid ABC approach called HABC, in which the standard ABC optimization is hybridized with a modified clonal selection algorithm of the Artificial Immune System that eliminates the poor exploration capabilities of standard ABC optimization. Further, this paper proposes a novel hybrid Artificial Bee Colony (Hybrid ABC) optimization where the strong explorative capabilities of the chemotaxis phase of the bacterial foraging optimization are integrated with a spiral model-based exploitative phase of the ABC by which the proposed Hybrid ABC overcomes the demerits of poor exploration and exploitation of the standard ABC algorithm.

METHODS

In this work, the two proposed hybrid approaches were used in concurrent feature selection and parameter optimization of an ANN model. The proposed algorithm is implemented using various back-propagation algorithms, including resilient back-propagation (HABC-RP and Hybrid ABC-RP), Levenberg Marquart (HABC-LM and Hybrid ABC-LM), and momentum-based gradient descent (HABC-MGD and Hybrid ABC-GD) for parameter tuning of ANN. The Wisconsin breast cancer dataset was used to evaluate the performance of the proposed algorithms in terms of accuracy, complexity, and computational time.

RESULTS

The mean accuracy of the proposed HABC-RP was 99.14% and 99.54% for Hybrid ABC which is better than the results found in the existing literature. HABC-RP attained a sensitivity of 98.32%, a specificity of 99.63%, and a precision of 99.38% whereas Hybrid ABC attained sensitivity of 99.08% and Specificity of 99.81%.

CONCLUSIONS

HABC-RP and Hybrid ABC-RP yielded high accuracy with a low complexity ANN structure compared to other variants. After evaluation, interestingly it is found that the Hybrid ABC-RP has achieved the highest mean accuracy of 99.54% with low complexity of 10.25 mean connections when compared to other variants proposed in this paper. It can be concluded that the concurrent selection of input features and tuning of parameters of ANN plays a vital role in increasing the accuracy of a breast cancer diagnosis. The proposed HABC-RP and Hybrid ABC-RP showed better results when compared to the existing breast cancer diagnosis systems taken for comparison. In the future, the proposed two-hybrid approaches can be used to generate optimal thresholds for the segmentation of tumors in abnormal images. HABC and Hybrid ABC can be used for tuning the parameters of various classifiers.

摘要

背景与目的

乳腺癌是女性最常见的癌症,也是导致全球死亡率的主要原因。提高乳腺癌患者生存率的关键在于早期诊断和适当治疗。由于人为错误、诊断不准确以及在高需求时耗时较长,手动乳腺癌诊断方法存在缺陷。基于人工神经网络(ANN)的智能系统在复杂情况下具有强大的决策能力,因此在自动乳腺癌诊断方面具有强大的功能。人工蜂群、人工免疫系统和细菌觅食优化是解决组合优化问题的群体智能算法。本文提出了两种新的混合人工蜂群(ABC)优化算法,克服了标准 ABC 算法的缺点。首先,本文提出了一种名为 HABC 的混合 ABC 方法,其中标准 ABC 优化与人工免疫系统的修正克隆选择算法相结合,消除了标准 ABC 优化的探索能力不足的问题。进一步,本文提出了一种新的混合人工蜂群(Hybrid ABC)优化方法,其中细菌觅食优化的趋化阶段的强大探索能力与基于 ABC 的螺旋模型的开发阶段相结合,通过该方法,提出的 Hybrid ABC 克服了标准 ABC 算法探索和开发不足的缺点。

方法

在这项工作中,这两种提出的混合方法用于 ANN 模型的并行特征选择和参数优化。该算法使用各种反向传播算法实现,包括弹性反向传播(HABC-RP 和 Hybrid ABC-RP)、列文伯格马夸特(HABC-LM 和 Hybrid ABC-LM)和基于动量的梯度下降(HABC-MGD 和 Hybrid ABC-GD)来调整 ANN 的参数。使用威斯康星州乳腺癌数据集来评估所提出算法在准确性、复杂性和计算时间方面的性能。

结果

与现有文献中的结果相比,提出的 HABC-RP 的平均准确率为 99.14%,Hybrid ABC 的平均准确率为 99.54%。HABC-RP 的灵敏度为 98.32%,特异性为 99.63%,精度为 99.38%,而 Hybrid ABC 的灵敏度为 99.08%,特异性为 99.81%。

结论

与其他变体相比,HABC-RP 和 Hybrid ABC-RP 具有较低的复杂性和较高的 ANN 结构精度。经过评估,有趣的是,与本文提出的其他变体相比,Hybrid ABC-RP 实现了最高的平均准确率 99.54%,复杂性为 10.25 个平均连接。可以得出结论,并行选择输入特征和调整 ANN 的参数对于提高乳腺癌诊断的准确性起着至关重要的作用。与比较中采用的现有乳腺癌诊断系统相比,提出的 HABC-RP 和 Hybrid ABC-RP 显示出更好的结果。在未来,所提出的两种混合方法可用于生成异常图像中肿瘤分割的最佳阈值。HABC 和 Hybrid ABC 可用于调整各种分类器的参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验