Suppr超能文献

基于同伦分析法的变刚度弹性地基上组合梁的静力分析

Static analysis of composite beams on variable stiffness elastic foundations by the Homotopy Analysis Method.

作者信息

Doeva Olga, Masjedi Pedram Khaneh, Weaver Paul M

机构信息

Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland.

出版信息

Acta Mech. 2021;232(10):4169-4188. doi: 10.1007/s00707-021-03043-z. Epub 2021 Aug 13.

Abstract

New analytical solutions for the static deflection of anisotropic composite beams resting on variable stiffness elastic foundations are obtained by the means of the Homotopy Analysis Method (HAM). The method provides a closed-form series solution for the problem described by a non-homogeneous system of coupled ordinary differential equations with constant coefficients and one variable coefficient reflecting variable stiffness elastic foundation. Analytical solutions are obtained based on two different algorithms, namely conventional HAM and iterative HAM (iHAM). To investigate the computational efficiency and convergence of HAM solutions, the preliminary studies are performed for a composite beam without elastic foundation under the action of transverse uniformly distributed loads considering three different types of stacking sequence which provide different levels and types of anisotropy. It is shown that applying the iterative approach results in better convergence of the solution compared with conventional HAM for the same level of accuracy. Then, analytical solutions are developed for composite beams on elastic foundations. New analytical results based on HAM are presented for the static deflection of composite beams resting on variable stiffness elastic foundations. Results are compared to those reported in the literature and those obtained by the Chebyshev Collocation Method in order to verify the validity and accuracy of the method. Numerical experiments reveal the accuracy and efficiency of the Homotopy Analysis Method in static beam problems.

摘要

通过同伦分析法(HAM)获得了基于变刚度弹性基础的各向异性复合梁静态挠度的新解析解。该方法为一个由常系数和一个反映变刚度弹性基础的变系数的非齐次耦合常微分方程组所描述的问题提供了一个封闭形式的级数解。基于两种不同的算法,即传统HAM和迭代HAM(iHAM)获得了解析解。为了研究HAM解的计算效率和收敛性,针对在横向均布载荷作用下无弹性基础的复合梁,考虑三种不同的铺层顺序进行了初步研究,这三种铺层顺序提供了不同程度和类型的各向异性。结果表明,在相同精度水平下,与传统HAM相比,应用迭代方法能使解具有更好的收敛性。然后,针对弹性基础上的复合梁推导了解析解。给出了基于HAM的关于置于变刚度弹性基础上的复合梁静态挠度的新解析结果。将结果与文献报道的结果以及通过切比雪夫配点法获得的结果进行比较,以验证该方法的有效性和准确性。数值实验揭示了同伦分析法在梁静态问题中的准确性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f38/8549990/6eef6e4c8162/707_2021_3043_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验