Vetterlein Thomas
Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria.
Aequ Math. 2021;95(3):483-503. doi: 10.1007/s00010-020-00756-9. Epub 2020 Sep 30.
An orthogonality space is a set together with a symmetric and irreflexive binary relation. Any linear space equipped with a reflexive and anisotropic inner product provides an example: the set of one-dimensional subspaces together with the usual orthogonality relation is an orthogonality space. We present simple conditions to characterise the orthogonality spaces that arise in this way from finite-dimensional Hermitian spaces. Moreover, we investigate the consequences of the hypothesis that an orthogonality space allows gradual transitions between any pair of its elements. More precisely, given elements and , we require a homomorphism from a divisible subgroup of the circle group to the automorphism group of the orthogonality space to exist such that one of the automorphisms maps to , and any of the automorphisms leaves the elements orthogonal to and fixed. We show that our hypothesis leads us to positive definite quadratic spaces. By adding a certain simplicity condition, we furthermore find that the field of scalars is Archimedean and hence a subfield of the reals.
一个正交空间是一个配备了对称且非自反二元关系的集合。任何配备了自反且各向异性内积的线性空间都提供了一个例子:一维子空间的集合以及通常的正交关系构成一个正交空间。我们给出简单条件来刻画以这种方式从有限维埃尔米特空间产生的正交空间。此外,我们研究正交空间允许其任意两个元素之间存在渐进过渡这一假设的结果。更确切地说,给定元素 和 ,我们要求存在从圆群的一个可除子群到正交空间自同构群的同态,使得其中一个自同构将 映射到 ,并且任何自同构都使与 和 正交的元素保持不变。我们表明我们的假设会导致正定二次空间。通过添加某个简单条件,我们进一步发现标量域是阿基米德的,因此是实数的一个子域。