Vetterlein Thomas
Institute for Mathematical Methods in Medicine and Data Based Modeling, Johannes Kepler University, Altenberger Straße 69, 4040 Linz, Austria.
Geom Dedic. 2022;216(3):36. doi: 10.1007/s10711-022-00696-5. Epub 2022 May 19.
An orthoset (also called an orthogonality space) is a set equipped with a symmetric and irreflexive binary relation , called the orthogonality relation. In quantum physics, orthosets play an elementary role. In particular, a Hilbert space gives rise to an orthoset in a canonical way and can be reconstructed from it. We investigate in this paper the question to which extent real Hilbert spaces can be characterised as orthosets possessing suitable types of symmetries. We establish that orthosets fulfilling a transitivity as well as a certain homogeneity property arise from (anisotropic) Hermitian spaces. Moreover, restricting considerations to divisible automorphisms, we narrow down the possibilities to positive definite quadratic spaces over an ordered field. We eventually show that, under the additional requirement that the action of these automorphisms is quasiprimitive, the scalar field embeds into .
一个正交集(也称为正交空间)是配备有一个对称且反自反的二元关系的集合,该二元关系称为正交关系。在量子物理学中,正交集起着基本作用。特别地,一个希尔伯特空间以一种规范的方式产生一个正交集,并且可以从该正交集重构出来。在本文中,我们研究实希尔伯特空间在多大程度上可以被刻画为具有合适类型对称性的正交集这一问题。我们证明满足传递性以及某种齐次性性质的正交集源自(各向异性的)埃尔米特空间。此外,将考虑限制在可除自同构上,我们将可能性缩小到有序域上的正定二次空间。我们最终表明,在这些自同构的作用是拟本原的这一额外要求下,标量域嵌入到 中。