Doikov Nikita, Nesterov Yurii
ICTEAM (Catholic University of Louvain), Louvain-la-Neuve, Belgium.
CORE (Catholic University of Louvain), Louvain-la-Neuve, Belgium.
J Optim Theory Appl. 2021;189(1):317-339. doi: 10.1007/s10957-021-01838-7. Epub 2021 Mar 10.
In this paper, we study the iteration complexity of cubic regularization of Newton method for solving composite minimization problems with uniformly convex objective. We introduce the notion of second-order condition number of a certain degree and justify the linear rate of convergence in a nondegenerate case for the method with an adaptive estimate of the regularization parameter. The algorithm automatically achieves the best possible global complexity bound among different problem classes of uniformly convex objective functions with Hölder continuous Hessian of the smooth part of the objective. As a byproduct of our developments, we justify an intuitively plausible result that the global iteration complexity of the Newton method is always better than that of the gradient method on the class of strongly convex functions with uniformly bounded second derivative.
在本文中,我们研究了用于求解具有一致凸目标函数的复合最小化问题的牛顿法三次正则化的迭代复杂度。我们引入了一定程度的二阶条件数的概念,并证明了在正则化参数具有自适应估计的情况下该方法在非退化情形下的线性收敛速率。该算法在目标函数光滑部分的黑塞矩阵为赫尔德连续的一致凸目标函数的不同问题类中自动实现了最优的全局复杂度界。作为我们研究成果的一个副产品,我们证明了一个直观上合理的结果:在二阶导数一致有界的强凸函数类上,牛顿法的全局迭代复杂度总是优于梯度法。