Böschen Ingmar
Psychological Methods and Statistics, Institute of Psychology, University Hamburg, Von-Melle-Park 5, 20146 Hamburg, Germany.
Scientometrics. 2021;126(12):9585-9601. doi: 10.1007/s11192-021-04162-z. Epub 2021 Oct 24.
is a general toolbox which facilitates text extraction and analytical tasks on NISO-JATS coded XML documents. Its function outputs metadata, the abstract, the sectioned text and reference list as easy selectable elements. One of the biggest repositories for open access full texts covering biology and the medical and health sciences is PubMed Central (PMC), with more than 3.2 million files. This report provides an overview of the PMC document collection processed with . The development of extracted tags is displayed for the full corpus over time and in greater detail for some meta tags. Possibilities and limitations for text miners working with scientific literature are outlined. The NISO-JATS-tags are used quite consistently nowadays and allow a reliable extraction of metadata and text elements. International collaborations are more present than ever. There are obvious errors in the date stamps of some documents. Only about half of all articles from 2020 contain at least one author listed with an author identification code. Since many authors share the same name, the identification of person-related content is problematic, especially for authors with Asian names. reliably extracts key metadata and text elements from NISO-JATS coded XML files. When combined with the rich, publicly available content within PMCs database, new monitoring and text mining approaches can be carried out easily. Any selection of article subsets should be carefully performed with in- and exclusion criteria on several NISO-JATS tags, as both the subject and keyword tags are used quite inconsistently.
是一个通用工具箱,可促进对NISO-JATS编码的XML文档进行文本提取和分析任务。其功能以易于选择的元素输出元数据、摘要、分段文本和参考文献列表。开放获取全文的最大存储库之一是涵盖生物学以及医学和健康科学的PubMed Central(PMC),拥有超过320万个文件。本报告概述了使用 处理的PMC文档集。随着时间的推移,展示了整个语料库中提取标签的发展情况,并对一些元标签进行了更详细的展示。概述了文本挖掘者处理科学文献时的可能性和局限性。如今,NISO-JATS标签的使用相当一致,能够可靠地提取元数据和文本元素。国际合作比以往任何时候都更加普遍。一些文档的日期戳存在明显错误。2020年所有文章中只有约一半至少列出了一位带有作者识别码的作者。由于许多作者姓名相同,与人员相关内容的识别存在问题,尤其是对于亚洲姓名的作者。 能够从NISO-JATS编码的XML文件中可靠地提取关键元数据和文本元素。当与PMC数据库中丰富的公开可用内容相结合时,可以轻松开展新的监测和文本挖掘方法。任何文章子集的选择都应根据几个NISO-JATS标签的纳入和排除标准仔细进行,因为主题标签和关键词标签的使用都相当不一致。