Amin Siti Faridah Mohd, Karim Roselina, Yusof Yus Aniza, Muhammad Kharidah
Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.
Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
Int J Food Sci. 2021 Oct 21;2021:1819104. doi: 10.1155/2021/1819104. eCollection 2021.
The demand for vegetable powder has been escalating considerably due to its various health benefits and higher shelf life compared to fresh green leafy vegetables. Thus, much research emphasised manufacturing vegetable powder at a lower operational cost and higher efficiency while preserving the nutritive values of the vegetables. In this study, zinc- (Zn-) amaranth puree was liquefied with three types of cell wall degrading enzymes (i.e., Viscozyme L, Pectinex Ultra SP-L, and Rapidase PAC) with varying concentrations (0-3% v/w) and incubation time (0.5-24 h) at pH 5 and 45°C before the drying process. The results showed that enzymatic liquefaction using 1% (v/w) of Viscozyme L for 3 h was the optimal procedure for the reduction of the viscosity of the puree. The liquefied puree was then microencapsulated through either spray- or freeze-drying with different wall materials, e.g., 10% of maltodextrin (MD) DE 10, resistant maltodextrin (RMD), N-octenyl succinate anhydride (OSA) starches from waxy maize, HI CAP 100 (HICAP), Capsul (CAP), and gum Arabic (GA). The results showed that all freeze-dried powders generally had higher process yield (except for that encapsulated by HICAP), higher moisture content (but similar water activities), higher retention of total Zn-chlorophyll derivatives, lower hygroscopicity with slab-like particles, larger particle size, and lower bulk density than those of spray-dried powders. In contrast, the spray-dried powders exhibited irregular spherical shapes with relatively high encapsulation efficiency and antioxidant activities. Nonetheless, encapsulation using different wall materials and drying methods had no significant effect on the powder's cohesiveness and flowability.
由于蔬菜粉具有多种健康益处且与新鲜绿叶蔬菜相比保质期更长,其需求一直在大幅上升。因此,许多研究都强调要以较低的运营成本和更高的效率来生产蔬菜粉,同时保留蔬菜的营养价值。在本研究中,在干燥过程之前,将锌(Zn)-苋菜泥与三种不同浓度(0-3% v/w)和孵育时间(0.5-24小时)的细胞壁降解酶(即Viscozyme L、Pectinex Ultra SP-L和Rapidase PAC)在pH值为5和45°C的条件下进行液化处理。结果表明,使用1%(v/w)的Viscozyme L进行3小时的酶液化是降低泥状物料粘度的最佳方法。然后,将液化后的泥状物料用不同的壁材通过喷雾干燥或冷冻干燥进行微胶囊化,例如10%的麦芽糊精(MD)DE 10、抗性麦芽糊精(RMD)、糯玉米来源的辛烯基琥珀酸酐(OSA)淀粉、HI CAP 100(HICAP)、Capsul(CAP)和阿拉伯胶(GA)。结果表明,与喷雾干燥粉末相比,所有冷冻干燥粉末通常具有更高的工艺产率(HICAP包封除外)、更高的水分含量(但水分活度相似)、更高的总锌-叶绿素衍生物保留率、更低的吸湿性、片状颗粒、更大的粒径和更低的堆积密度。相比之下,喷雾干燥粉末呈现不规则球形,具有相对较高的包封效率和抗氧化活性。尽管如此,使用不同壁材和干燥方法进行包封对粉末的内聚性和流动性没有显著影响。