Kao Po-Yu, Chen Jeffereson W, Manjunath B S
University of California, Santa Barbara, CA, USA.
University of California, Irvine, CA, USA.
Brainlesion. 2020;11992:32-43. doi: 10.1007/978-3-030-46640-4_4. Epub 2020 May 19.
The volume of stroke lesion is the gold standard for predicting the clinical outcome of stroke patients. However, the presence of stroke lesion may cause neural disruptions to other brain regions, and these potentially damaged regions may affect the clinical outcome of stroke patients. In this paper, we introduce the tractographic feature to capture these potentially damaged regions and predict the modified Rankin Scale (mRS), which is a widely used outcome measure in stroke clinical trials. The tractographic feature is built from the stroke lesion and average connectome information from a group of normal subjects. The tractographic feature takes into account different functional regions that may be affected by the stroke, thus complementing the commonly used stroke volume features. The proposed tractographic feature is tested on a public stroke benchmark Ischemic Stroke Lesion Segmentation 2017 and achieves higher accuracy than the stroke volume and the state-of-the-art feature on predicting the mRS grades of stroke patients. Also, the tractographic feature yields a lower average absolute error than the commonly used stroke volume feature.
中风病灶体积是预测中风患者临床结局的金标准。然而,中风病灶的存在可能会对其他脑区造成神经干扰,而这些潜在受损区域可能会影响中风患者的临床结局。在本文中,我们引入了纤维束成像特征来捕捉这些潜在受损区域,并预测改良Rankin量表(mRS),这是中风临床试验中广泛使用的结局指标。纤维束成像特征是基于中风病灶以及一组正常受试者的平均连接组信息构建的。纤维束成像特征考虑了可能受中风影响的不同功能区域,从而补充了常用的中风体积特征。所提出的纤维束成像特征在公开的中风基准数据集“缺血性中风病灶分割2017”上进行了测试,在预测中风患者的mRS分级方面比中风体积和当前最先进的特征具有更高的准确性。此外,纤维束成像特征产生的平均绝对误差比常用的中风体积特征更低。