Suppr超能文献

建立和验证预测卒中后抑郁风险的列线图模型。

Establishment and verification of a nomogram model for predicting the risk of post-stroke depression.

机构信息

Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.

Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.

出版信息

PeerJ. 2023 Feb 2;11:e14822. doi: 10.7717/peerj.14822. eCollection 2023.

Abstract

OBJECTIVE

The purpose of this study was to establish a nomogram predictive model of clinical risk factors for post-stroke depression (PSD).

PATIENTS AND METHODS

We used the data of 202 stroke patients collected from Xuanwu Hospital from October 2018 to September 2020 as training data to develop a predictive model. Nineteen clinical factors were selected to evaluate their risk. Minimum absolute contraction and selection operator (LASSO, least absolute shrinkage and selection operator) regression were used to select the best patient attributes, and seven predictive factors with predictive ability were selected, and then multi-factor logistic regression analysis was carried out to determine six predictive factors and establish a nomogram prediction model. The C-index, calibration chart, and decision curve analyses were used to evaluate the predictive ability, accuracy, and clinical practicability of the prediction model. We then used the data of 156 stroke patients collected by Xiangya Hospital from June 2019 to September 2020 for external verification.

RESULTS

The selected predictors including work style, number of children, time from onset to hospitalization, history of hyperlipidemia, stroke area, and the National Institutes of Health Stroke Scale (NIHSS) score. The model showed good prediction ability and a C index of 0.773 (95% confidence interval: [0.696-0.850]). It reached a high C-index value of 0.71 in bootstrap verification, and its C index was observed to be as high as 0.702 (95% confidence interval: [0.616-0.788]) in external verification. Decision curve analyses further showed that the nomogram of post-stroke depression has high clinical usefulness when the threshold probability was 6%.

CONCLUSION

This novel nomogram, which combines patients' work style, number of children, time from onset to hospitalization, history of hyperlipidemia, stroke area, and NIHSS score, can help clinicians to assess the risk of depression in patients with acute stroke much earlier in the timeline of the disease, and to implement early intervention treatment so as to reduce the incidence of PSD.

摘要

目的

本研究旨在建立预测脑卒中后抑郁(PSD)临床危险因素的列线图预测模型。

方法

我们使用了 2018 年 10 月至 2020 年 9 月宣武医院收治的 202 例脑卒中患者的数据作为训练数据来开发预测模型。选择了 19 个临床因素来评估其风险。最小绝对收缩和选择算子(LASSO,最小绝对收缩和选择算子)回归用于选择最佳患者属性,选择了 7 个具有预测能力的预测因素,然后进行多因素逻辑回归分析,确定了 6 个预测因素,并建立了列线图预测模型。C 指数、校准图和决策曲线分析用于评估预测模型的预测能力、准确性和临床实用性。然后,我们使用了 2019 年 6 月至 2020 年 9 月湘雅医院收治的 156 例脑卒中患者的数据进行外部验证。

结果

选择的预测因子包括工作方式、子女数量、发病至住院时间、高脂血症史、脑卒中面积和美国国立卫生研究院脑卒中量表(NIHSS)评分。该模型具有良好的预测能力,C 指数为 0.773(95%置信区间:[0.696-0.850])。在 bootstrap 验证中达到了较高的 C 指数值 0.71,在外部验证中观察到的 C 指数高达 0.702(95%置信区间:[0.616-0.788])。决策曲线分析进一步表明,当阈值概率为 6%时,列线图预测脑卒中后抑郁具有较高的临床实用性。

结论

该列线图模型结合了患者的工作方式、子女数量、发病至住院时间、高脂血症史、脑卒中面积和 NIHSS 评分,可以帮助临床医生更早地评估急性脑卒中患者的抑郁风险,并进行早期干预治疗,从而降低 PSD 的发生率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ada3/9899426/d6df401e05f9/peerj-11-14822-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验