Lin Wei-Hsiang, Wu Pin Chieh, Akbari Hamidreza, Rossman George R, Yeh Nai-Chang, Atwater Harry A
Department of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA.
Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan.
Adv Mater. 2022 Jan;34(3):e2104863. doi: 10.1002/adma.202104863. Epub 2021 Nov 28.
Monolayer transition metal dichalcogenides (TMDs) have intrinsic valley degrees of freedom, making them appealing for exploiting valleytronic applications in information storage and processing. WS monolayer possesses two inequivalent valleys in the Brillouin zone, each valley coupling selectively with a circular polarization of light. The degree of valley polarization (DVP) under the excitation of circularly polarized light (CPL) is a parameter that determines the purity of valley polarized photoluminescence (PL) of monolayer WS . Here efficient tailoring of valley-polarized PL from monolayer WS at room temperature (RT) through surface plasmon-exciton interactions with plasmonic Archimedes spiral (PAS) nanostructures is reported. The DVP of WS at RT can be enhanced from <5% to 40% and 50% by using 2 turns (2T) and 4 turns (4T) of PAS, respectively. Further enhancement and control of excitonic valley polarization is demonstrated by electrostatically doping monolayer WS . For CPL on WS -2TPAS heterostructures, the 40% valley polarization is enhanced to 70% by modulating the carrier doping via a backgate, which may be attributed to the screening of momentum-dependent long-range electron-hole exchange interactions. The manifestation of electrically tunable valley-polarized emission from WS -PAS heterostructures presents a new strategy toward harnessing valley excitons for application in ultrathin valleytronic devices.
单层过渡金属二硫属化物(TMDs)具有固有的谷自由度,这使得它们在信息存储和处理中的谷电子学应用方面具有吸引力。WS单层在布里渊区具有两个不等价的谷,每个谷选择性地与光的圆偏振耦合。圆偏振光(CPL)激发下的谷极化度(DVP)是决定单层WS谷极化光致发光(PL)纯度的一个参数。本文报道了通过与等离子体阿基米德螺旋(PAS)纳米结构的表面等离子体-激子相互作用,在室温(RT)下对单层WS的谷极化PL进行有效调控。通过使用2圈(2T)和4圈(4T)的PAS,WS在室温下的DVP可分别从<5%提高到40%和50%。通过对单层WS进行静电掺杂,进一步证明了对激子谷极化的增强和控制。对于WS-2TPAS异质结构上的CPL,通过背栅调制载流子掺杂,40%的谷极化增强到70%,这可能归因于对动量依赖的长程电子-空穴交换相互作用的屏蔽。WS-PAS异质结构电可调谷极化发射的表现为在超薄谷电子器件中利用谷激子提供了一种新策略。