Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA.
Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA.
Neuron. 2022 Jan 5;110(1):70-85.e6. doi: 10.1016/j.neuron.2021.10.014. Epub 2021 Nov 1.
Proper assembly and function of the nervous system requires the generation of a uniquely diverse population of neurons expressing a cell-type-specific combination of effector genes that collectively define neuronal morphology, connectivity, and function. How countless partially overlapping but cell-type-specific patterns of gene expression are controlled at the genomic level remains poorly understood. Here we show that neuronal genes are associated with highly complex gene regulatory systems composed of independent cell-type- and cell-stage-specific regulatory elements that reside in expanded non-coding genomic domains. Mapping enhancer-promoter interactions revealed that motor neuron enhancers are broadly distributed across the large chromatin domains. This distributed regulatory architecture is not a unique property of motor neurons but is employed throughout the nervous system. The number of regulatory elements increased dramatically during the transition from invertebrates to vertebrates, suggesting that acquisition of new enhancers might be a fundamental process underlying the evolutionary increase in cellular complexity.
神经系统的正确组装和功能需要生成具有独特多样性的神经元群体,这些神经元表达细胞类型特异性的效应基因组合,这些基因共同定义了神经元的形态、连接和功能。无数部分重叠但细胞类型特异性的基因表达模式如何在基因组水平上受到控制,目前仍知之甚少。在这里,我们表明神经元基因与高度复杂的基因调控系统相关,这些系统由独立的细胞类型和细胞阶段特异性的调控元件组成,这些元件位于扩展的非编码基因组区域中。增强子-启动子相互作用的映射表明,运动神经元增强子广泛分布在大的染色质域中。这种分布式的调控结构不是运动神经元所特有的,而是在整个神经系统中都有使用。从无脊椎动物到脊椎动物的过渡过程中,调控元件的数量急剧增加,这表明新的增强子的获得可能是细胞复杂性进化增加的基础过程。