Suppr超能文献

通过将人工智能和流式细胞术相结合,可以实现浆细胞异常的准确分类。

Accurate classification of plasma cell dyscrasias is achieved by combining artificial intelligence and flow cytometry.

机构信息

Service d'Hématologie Biologique, CHU Amiens-Picardie, Amiens, France.

Service d'Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France.

出版信息

Br J Haematol. 2022 Mar;196(5):1175-1183. doi: 10.1111/bjh.17933. Epub 2021 Nov 3.

Abstract

Monoclonal gammopathy of unknown significance (MGUS), smouldering multiple myeloma (SMM), and multiple myeloma (MM) are very common neoplasms. However, it is often difficult to distinguish between these entities. In the present study, we aimed to classify the most powerful markers that could improve diagnosis by multiparametric flow cytometry (MFC). The present study included 348 patients based on two independent cohorts. We first assessed how representative the data were in the discovery cohort (123 MM, 97 MGUS) and then analysed their respective plasma cell (PC) phenotype in order to obtain a set of correlations with a hypersphere visualisation. Cluster of differentiation (CD)27 and CD38 were differentially expressed in MGUS and MM (P < 0·001). We found by a gradient boosting machine method that the percentage of abnormal PCs and the ratio PC/CD117 positive precursors were the most influential parameters at diagnosis to distinguish MGUS and MM. Finally, we designed a decisional algorithm allowing a predictive classification ≥95% when PC dyscrasias were suspected, without any misclassification between MGUS and SMM. We validated this algorithm in an independent cohort of PC dyscrasias (n = 87 MM, n = 41 MGUS). This artificial intelligence model is freely available online as a diagnostic tool application website for all MFC centers worldwide (https://aihematology.shinyapps.io/PCdyscrasiasToolDg/).

摘要

意义未明的单克隆丙种球蛋白血症(MGUS)、冒烟型多发性骨髓瘤(SMM)和多发性骨髓瘤(MM)都是非常常见的肿瘤。然而,这些实体之间往往难以区分。本研究旨在通过多参数流式细胞术(MFC)确定能够提高诊断效能的最有力标志物。本研究基于两个独立队列纳入了 348 例患者。我们首先评估了发现队列(123 例 MM,97 例 MGUS)中数据的代表性,然后分析了各自浆细胞(PC)表型,以获得一组与超球体可视化相关的相关性。CD27 和 CD38 在 MGUS 和 MM 中表达差异有统计学意义(P<0·001)。我们通过梯度提升机方法发现,异常 PC 的百分比和 PC/CD117 阳性前体细胞的比值是诊断时区分 MGUS 和 MM 的最有影响的参数。最后,我们设计了一个决策算法,当怀疑存在 PC 异常时,预测分类的准确率≥95%,且不会将 MGUS 和 SMM 错误分类。我们在 PC 异常的独立队列中验证了该算法(n=87 例 MM,n=41 例 MGUS)。该人工智能模型可作为一个诊断工具应用网站,在全球范围内向所有 MFC 中心免费提供(https://aihematology.shinyapps.io/PCdyscrasiasToolDg/)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验