Suppr超能文献

在剂量计算中引入核截断的矩阵稀疏性以实现通量优化。

Introducing matrix sparsity with kernel truncation into dose calculations for fluence optimization.

机构信息

Medical Physics Graduate Program, Duke University, Durham NC, United States of America.

Department of Radiation Oncology, Duke University, Durham NC, United States of America.

出版信息

Biomed Phys Eng Express. 2021 Nov 12;8(1). doi: 10.1088/2057-1976/ac35f8.

Abstract

Deep learning algorithms for radiation therapy treatment planning automation require large patient datasets and complex architectures that often take hundreds of hours to train. Some of these algorithms require constant dose updating (such as with reinforcement learning) and may take days. When these algorithms rely on commerical treatment planning systems to perform dose calculations, the data pipeline becomes the bottleneck of the entire algorithm's efficiency. Further, uniformly accurate distributions are not always needed for the training and approximations can be introduced to speed up the process without affecting the outcome. These approximations not only speed up the calculation process, but allow for custom algorithms to be written specifically for the purposes of use in AI/ML applications where the dose and fluence must be calculated a multitude of times for a multitude of different situations. Here we present and investigate the effect of introducing matrix sparsity through kernel truncation on the dose calculation for the purposes of fluence optimzation within these AI/ML algorithms. The basis for this algorithm relies on voxel discrimination in which numerous voxels are pruned from the computationally expensive part of the calculation. This results in a significant reduction in computation time and storage. Comparing our dose calculation against calculations in both a water phantom and patient anatomy in Eclipse without heterogenity corrections produced gamma index passing rates around 99% for individual and composite beams with uniform fluence and around 98% for beams with a modulated fluence. The resulting sparsity introduces a reduction in computational time and space proportional to the square of the sparsity tolerance with a potential decrease in cost greater than 10 times that of a dense calculation allowing not only for faster caluclations but for calculations that a dense algorithm could not perform on the same system.

摘要

深度学习算法在放射治疗计划自动化中需要大量的患者数据集和复杂的架构,通常需要数百个小时进行训练。其中一些算法需要不断更新剂量(例如使用强化学习),可能需要数天时间。当这些算法依赖商业治疗计划系统来进行剂量计算时,数据管道就成为整个算法效率的瓶颈。此外,在训练中并不总是需要均匀准确的分布,并且可以引入近似值来加速计算过程,而不会影响结果。这些近似值不仅可以加快计算过程,还可以编写专门针对 AI/ML 应用程序使用的自定义算法,在这些应用程序中,必须多次计算多种不同情况下的剂量和注量。在这里,我们提出并研究了通过核截断引入矩阵稀疏性对这些 AI/ML 算法中用于注量优化的剂量计算的影响。该算法的基础是体素判别,其中从计算成本较高的部分中修剪了大量体素。这导致计算时间和存储显著减少。将我们的剂量计算与 Eclipse 中的水模和患者解剖结构中的计算进行比较,无需进行非均匀性校正,个体和复合射束的均匀注量的伽马指数通过率约为 99%,调制注量的射束的伽马指数通过率约为 98%。稀疏性导致计算时间和空间的减少与稀疏容忍度的平方成正比,成本的潜在降低超过密集计算的 10 倍,不仅可以实现更快的计算,还可以实现密集算法无法在同一系统上执行的计算。

相似文献

1
Introducing matrix sparsity with kernel truncation into dose calculations for fluence optimization.
Biomed Phys Eng Express. 2021 Nov 12;8(1). doi: 10.1088/2057-1976/ac35f8.
2
Impact of the dose quantity used in MV photon optimization on dose distribution, robustness, and complexity.
Med Phys. 2022 Jan;49(1):648-665. doi: 10.1002/mp.15389. Epub 2021 Dec 13.
5
PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning.
Med Phys. 2011 Sep;38(9):5217-29. doi: 10.1118/1.3615622.
6
Total body irradiation dose optimization based on radiological depth.
J Appl Clin Med Phys. 2012 May 10;13(3):3767. doi: 10.1120/jacmp.v13i3.3767.
7
Parallel beamlet dose calculation via beamlet contexts in a distributed multi-GPU framework.
Med Phys. 2019 Aug;46(8):3719-3733. doi: 10.1002/mp.13651. Epub 2019 Jun 30.
8
Algorithm for correcting optimization convergence errors in Eclipse.
J Appl Clin Med Phys. 2009 Oct 14;10(4):281-289. doi: 10.1120/jacmp.v10i4.3061.
9
Continuous aperture dose calculation and optimization for volumetric modulated arc therapy.
Phys Med Biol. 2018 Oct 26;63(21):21NT01. doi: 10.1088/1361-6560/aae65e.

本文引用的文献

2
Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams.
Phys Med Biol. 2010 Feb 7;55(3):581-98. doi: 10.1088/0031-9155/55/3/002. Epub 2010 Jan 7.
3
A finite size pencil beam algorithm for IMRT dose optimization: density corrections.
Phys Med Biol. 2007 Feb 7;52(3):617-33. doi: 10.1088/0031-9155/52/3/006. Epub 2007 Jan 10.
5
A finite size pencil beam for IMRT dose optimization.
Phys Med Biol. 2005 Apr 21;50(8):1747-66. doi: 10.1088/0031-9155/50/8/009. Epub 2005 Apr 6.
6
Reduction of computational dimensionality in inverse radiotherapy planning using sparse matrix operations.
Phys Med Biol. 2001 May;46(5):N117-25. doi: 10.1088/0031-9155/46/5/402.
7
Calculation of a pencil beam kernel from measured photon beam data.
Phys Med Biol. 1999 Dec;44(12):2917-28. doi: 10.1088/0031-9155/44/12/305.
9
Experimental determination of the dose kernel in high-energy x-ray beams.
Med Phys. 1996 Apr;23(4):505-11. doi: 10.1118/1.597807.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验