Sultana Fozia, Althubeiti Khaled, Abualnaja Khamael M, Wang Jiahui, Zaman Abid, Ali Asad, Arbab Safeer Ahmad, Uddin Sarir, Yang Qing
Hefei National Laboratory of Physical Sciences at the Microscale (HFNL), Department of Chemistry, Laboratory of Nanomaterial's for Energy Conversion (LNEC), University of Science and Technology China, Hefei 230026, Anhui, P. R. China.
Department of Chemistry, College of Science, Taif University, P. O Box 11099, Taif 21944, Saudi Arabia.
Dalton Trans. 2021 Nov 16;50(44):16386-16394. doi: 10.1039/d1dt03033g.
For safety concerns, polymer-based Li-O batteries have received more attention than traditional non-aqueous Li-O batteries. However, poor cycling stability, low round trip efficiency, and over charge potential during cycling are the major shortcomings for their future applications. In this work, a soluble redox mediator integrated into a polymer electrolyte provides immediate access to the solid discharged product, lowering the energy barrier for reversible LiO generation and disintegration. Moreover, introducing a redox mediator to the polymer electrolyte boosts the ORR during discharge and the OER during the recharge process. The synergistic redox mediator pBQ (1,4 benzoquinone) dramatically reduces the over-potential. A small proportion of pBQ in the polymer electrolyte allows LiO to develop in a thin film-like morphology on the cathode surface, resulting in a high reversible capacity of ∼12 000 mA h g and an extended cycling stability of 100 cycles at 200 mA g with a cut-off capacity of 1000 mA h g. The remarkable cell performance is attributed to the fast kinetics of benzoquinone for the ORR and OER in Li-O batteries. The use of a redox mediator in a polymer electrolyte opens a new avenue for practical Li-O battery applications in achieving low charge potential and excellent energy efficiency.
出于安全考虑,聚合物基锂氧电池比传统非水锂氧电池受到了更多关注。然而,循环稳定性差、往返效率低以及循环过程中的过充电电位是其未来应用的主要缺点。在这项工作中,一种集成在聚合物电解质中的可溶性氧化还原介质能够直接接触到固态放电产物,降低了可逆生成和分解LiO的能量势垒。此外,在聚合物电解质中引入氧化还原介质可提高放电过程中的氧还原反应(ORR)和充电过程中的析氧反应(OER)。协同氧化还原介质对苯醌(pBQ,1,4 - 苯醌)显著降低了过电位。聚合物电解质中少量的pBQ使LiO在阴极表面以薄膜状形态生长,从而在200 mA g的电流密度和1000 mA h g的截止容量下,实现了约12000 mA h g的高可逆容量和100次循环的延长循环稳定性。这种卓越的电池性能归因于对苯醌在锂氧电池中ORR和OER的快速动力学。在聚合物电解质中使用氧化还原介质为实现低充电电位和优异能量效率的实用锂氧电池应用开辟了一条新途径。