ITMO University, 49 Kronverskiy prospect, 197101, Saint Petersburg, Russia.
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia.
Stud Health Technol Inform. 2021 Oct 27;285:88-93. doi: 10.3233/SHTI210578.
This article describes the results of feature extraction from unstructured medical records and prediction of postoperative complications for patients with thoracic aortic aneurysm operations using machine learning algorithms. The datasets from two different medical centers were integrated. Seventy-two features were extracted from Russian unstructured medical records. We formulated 8 target features: Mortality, Temporary neurological deficit (TND), Permanent neurological deficit (PND), Prolonged (> 7 days) lung ventilation (LV), Renal replacement therapy (RRT), Bleeding, Myocardial infarction (MI), Multiple organ failure (MOF). XGBoost showed the best performance for most target variables (F-measure 0.74-0.95) which is comparable to recent results in cardiovascular postoperative risks prediction.
本文描述了使用机器学习算法从非结构化医疗记录中提取特征并预测胸主动脉瘤手术患者术后并发症的结果。整合了来自两个不同医疗中心的数据集。从俄罗斯的非结构化医疗记录中提取了 72 个特征。我们制定了 8 个目标特征:死亡率、暂时性神经功能缺损(TND)、永久性神经功能缺损(PND)、延长(> 7 天)肺部通气(LV)、肾脏替代治疗(RRT)、出血、心肌梗死(MI)、多器官衰竭(MOF)。XGBoost 对大多数目标变量(F 度量值 0.74-0.95)的表现最佳,与心血管手术后风险预测的最新结果相当。