Suppr超能文献

基于俄罗斯综合数据预测主动脉瘤术后风险。

Predicting the Aortic Aneurysm Postoperative Risks Based on Russian Integrated Data.

机构信息

ITMO University, 49 Kronverskiy prospect, 197101, Saint Petersburg, Russia.

Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia.

出版信息

Stud Health Technol Inform. 2021 Oct 27;285:88-93. doi: 10.3233/SHTI210578.

Abstract

This article describes the results of feature extraction from unstructured medical records and prediction of postoperative complications for patients with thoracic aortic aneurysm operations using machine learning algorithms. The datasets from two different medical centers were integrated. Seventy-two features were extracted from Russian unstructured medical records. We formulated 8 target features: Mortality, Temporary neurological deficit (TND), Permanent neurological deficit (PND), Prolonged (> 7 days) lung ventilation (LV), Renal replacement therapy (RRT), Bleeding, Myocardial infarction (MI), Multiple organ failure (MOF). XGBoost showed the best performance for most target variables (F-measure 0.74-0.95) which is comparable to recent results in cardiovascular postoperative risks prediction.

摘要

本文描述了使用机器学习算法从非结构化医疗记录中提取特征并预测胸主动脉瘤手术患者术后并发症的结果。整合了来自两个不同医疗中心的数据集。从俄罗斯的非结构化医疗记录中提取了 72 个特征。我们制定了 8 个目标特征:死亡率、暂时性神经功能缺损(TND)、永久性神经功能缺损(PND)、延长(> 7 天)肺部通气(LV)、肾脏替代治疗(RRT)、出血、心肌梗死(MI)、多器官衰竭(MOF)。XGBoost 对大多数目标变量(F 度量值 0.74-0.95)的表现最佳,与心血管手术后风险预测的最新结果相当。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验