Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States.
J Phys Chem B. 2021 Nov 18;125(45):12528-12538. doi: 10.1021/acs.jpcb.1c07132. Epub 2021 Nov 4.
The wide range of applications of the isocyanates across multiple industries sparks the interest in the study of their phase behavior. A molecular simulation is a powerful tool that can go beyond experimental investigations relying on a molecular structure of a chemical. The success of a molecular simulation relies on a description of the system, namely, force field, and its parameterization on reproducing properties of interest. In this work, we propose a united-atom force field based on the transferable potentials for phase equilibria (TraPPE) to model the vapor-liquid phase behavior of isocyanates. With Monte Carlo and molecular dynamics simulation methods and the introduced force field, we modeled vapor-liquid equilibrium for a family of linear mono-isocyanates, from methyl isocyanate to hexyl isocyanate, and hexamethylene diisocyanate. Additionally, we performed similar calculations for methyl, ethyl, and butyl isocyanates based on the all-atom GAFF-IC force field available in the literature for modeling isocyanate viscosities. We showed that the developed TraPPE-based force field generally overperformed the GAFF-IC force field and overall showed excellent performance in modeling phase behavior of isocyanates. Based on the simulated vapor pressures for the considered compounds, we estimated the Antoine equation parameters to calculate the vapor pressure in a range of temperatures. The predictions are of particular use in the investigation of thermodynamic properties for those isocyanates lacking experimental vapor pressure data. Results can also be employed in modeling the phase behavior of isocyanate mixtures to investigate their sensing and capturing. Furthermore, from the vapor-liquid equilibrium binodals, we predicted the critical properties of isocyanates which can be used in thermodynamic models based on an equation of state.
异氰酸酯在多个行业中的广泛应用引起了人们对其相行为研究的兴趣。分子模拟是一种强大的工具,可以超越依赖化学物质分子结构的实验研究。分子模拟的成功依赖于对系统的描述,即力场,以及其参数化以再现感兴趣的性质。在这项工作中,我们提出了一种基于可传递相平衡(TraPPE)的统一原子力场来模拟异氰酸酯的汽液相行为。我们使用蒙特卡罗和分子动力学模拟方法以及引入的力场,模拟了一系列线性单异氰酸酯(从甲基异氰酸酯到己基异氰酸酯和六亚甲基二异氰酸酯)的汽液平衡。此外,我们还根据文献中用于模拟异氰酸酯粘度的全原子 GAFF-IC 力场,对甲基、乙基和丁基异氰酸酯进行了类似的计算。我们表明,开发的基于 TraPPE 的力场通常优于 GAFF-IC 力场,并且在模拟异氰酸酯的相行为方面总体表现出色。基于所考虑化合物的模拟蒸汽压,我们估计了 Antoine 方程参数以计算一系列温度下的蒸汽压。这些预测对于研究缺乏实验蒸汽压数据的异氰酸酯的热力学性质特别有用。结果还可用于模拟异氰酸酯混合物的相行为,以研究其传感和捕获。此外,从汽液平衡的双节点,我们预测了异氰酸酯的临界性质,这些性质可用于基于状态方程的热力学模型。