Suppr超能文献

用于精确单阶段目标检测的并行残差双融合特征金字塔网络

Parallel Residual Bi-Fusion Feature Pyramid Network for Accurate Single-Shot Object Detection.

作者信息

Chen Ping-Yang, Chang Ming-Ching, Hsieh Jun-Wei, Chen Yong-Sheng

出版信息

IEEE Trans Image Process. 2021;30:9099-9111. doi: 10.1109/TIP.2021.3118953.

Abstract

This paper proposes the Parallel Residual Bi-Fusion Feature Pyramid Network (PRB-FPN) for fast and accurate single-shot object detection. Feature Pyramid (FP) is widely used in recent visual detection, however the top-down pathway of FP cannot preserve accurate localization due to pooling shifting. The advantage of FP is weakened as deeper backbones with more layers are used. In addition, it cannot keep up accurate detection of both small and large objects at the same time. To address these issues, we propose a new parallel FP structure with bi-directional (top-down and bottom-up) fusion and associated improvements to retain high-quality features for accurate localization. We provide the following design improvements: 1) parallel bifusion FP structure with a bottom-up fusion module (BFM) to detect both small and large objects at once with high accuracy; 2) concatenation and re-organization (CORE) module provides a bottom-up pathway for feature fusion, which leads to the bi-directional fusion FP that can recover lost information from lower-layer feature maps; 3) CORE feature is further purified to retain richer contextual information. Such CORE purification in both top-down and bottom-up pathways can be finished in only a few iterations; 4) adding of a residual design to CORE leads to a new Re-CORE module that enables easy training and integration with a wide range of deeper or lighter backbones. The proposed network achieves state-of-the-art performance on the UAVDT17 and MS COCO datasets.

摘要

本文提出了并行残差双融合特征金字塔网络(PRB-FPN),用于快速准确的单阶段目标检测。特征金字塔(FP)在最近的视觉检测中被广泛使用,然而,由于池化偏移,FP的自上而下路径无法保持准确的定位。随着使用具有更多层的更深的骨干网络,FP的优势被削弱。此外,它无法同时对小物体和大物体进行准确检测。为了解决这些问题,我们提出了一种新的并行FP结构,具有双向(自上而下和自下而上)融合以及相关改进,以保留高质量特征用于准确的定位。我们提供了以下设计改进:1)具有自下而上融合模块(BFM)的并行双融合FP结构,能够同时高精度地检测小物体和大物体;2)拼接与重组(CORE)模块为特征融合提供了自下而上的路径,从而形成了能够从下层特征图中恢复丢失信息的双向融合FP;3)CORE特征进一步提纯以保留更丰富的上下文信息。这种在自上而下和自下而上路径中的CORE提纯仅需几次迭代即可完成;4)在CORE中添加残差设计导致了新的Re-CORE模块,该模块便于训练并能与各种更深或更轻的骨干网络集成。所提出的网络在UAVDT17和MS COCO数据集上取得了领先的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验