Suppr超能文献

仿生绿色光交联海藻酸-肝素水凝胶支持 HUVEC 管形成。

Bio-inspired green light crosslinked alginate-heparin hydrogels support HUVEC tube formation.

机构信息

Department of Mechanical Engineering, Burlington, VT, USA.

Department of Electrical and Biomedical Engineering, Burlington, VT, USA.

出版信息

J Mech Behav Biomed Mater. 2022 Jan;125:104932. doi: 10.1016/j.jmbbm.2021.104932. Epub 2021 Oct 28.

Abstract

Alginate is a polysaccharide which forms hydrogels via ionic and/or covalent crosslinking. The goal was to develop a material with suitable, physiologically relevant mechanical properties and biological impact for use in wound treatment. To determine if the novel material can initiate tube formation on its own, without the dependance on the addition of growth factors, heparin and/or arginyl-glycyl-aspartic acid (RGD) was covalently conjugated onto the alginate backbone. Herein, cell adhesion motifs and bioactive functional groups were incorporated covalently within alginate hydrogels to study the: 1) impact of crosslinked heparin on tubular network formation, 2) impact of RGD conjugation, and the 3) biological effect of vascular endothelial growth factor (VEGF) loading on cellular response. We investigated the structure-properties-function relationship and determined the viscoelastic and burst properties of the hydrogels most applicable for use as a healing cell and tissue adhesive material. Methacrylation of alginate and heparin hydroxyl groups respectively enabled free-radical covalent inter- and intra-molecular photo-crosslinking when exposed to visible green light in the presence of photo-initiators; the shear moduli indicate mechanical properties comparable to clinical standards. RGD was conjugated via carbodiimide chemistry at the alginate carboxyl groups. The adhesive and mechanical properties of alginate and alginate-heparin hydrogels were determined via burst pressure testing and rheology. Higher burst pressure and material failure at rupture imply physical tissue adhesion, advantageous for a tissue sealant healing material. After hydrogel formation, human umbilical vein endothelial cells (HUVECs) were seeded onto the alginate-based hydrogels; cytotoxicity, total protein content, and tubular network formation were assessed. Burst pressure results indicate that the cell responsive hydrogels adhere to collagen substrates and exhibit increased strength under high pressures. Furthermore, the results show that the green light crosslinked alginate-heparin maintained cell adhesion and promoted tubular formation.

摘要

藻酸盐是一种多糖,通过离子和/或共价交联形成水凝胶。目的是开发一种具有合适的、与生理相关的机械性能和生物学影响的材料,用于伤口治疗。为了确定新的材料是否可以在没有添加生长因子、肝素和/或精氨酸-甘氨酸-天冬氨酸(RGD)的情况下自行启动管形成,肝素和 RGD 被共价连接到藻酸盐主链上。在这里,细胞黏附基序和生物活性官能团被共价结合到藻酸盐水凝胶中,以研究:1)交联肝素对管状网络形成的影响,2)RGD 结合的影响,以及 3)血管内皮生长因子(VEGF)负载对细胞反应的生物学影响。我们研究了结构-性能-功能关系,并确定了最适用于作为愈合细胞和组织粘合剂材料的水凝胶的粘弹性和破裂特性。藻酸盐和肝素的羟基分别通过甲基丙烯酰化和化学修饰,在存在光引发剂的情况下,当暴露于可见绿光时,可进行自由基共价的分子内和分子间光交联;剪切模量表明机械性能可与临床标准相媲美。RGD 通过碳二亚胺化学在藻酸盐的羧基上进行了共轭。通过破裂压力测试和流变学来确定藻酸盐和藻酸盐-肝素水凝胶的粘附和机械性能。更高的破裂压力和材料在破裂时的失效意味着物理组织粘附,这对组织密封愈合材料是有利的。在水凝胶形成后,将人脐静脉内皮细胞(HUVEC)接种到基于藻酸盐的水凝胶上;评估细胞毒性、总蛋白含量和管状网络形成。破裂压力结果表明,细胞响应水凝胶附着在胶原蛋白底物上,并在高压下表现出更高的强度。此外,结果表明,绿光交联的藻酸盐-肝素保持了细胞黏附性并促进了管状形成。

相似文献

6
Anticancer Therapeutic Alginate-Based Tissue Sealants for Lung Repair.用于肺修复的基于抗癌治疗的海藻酸盐组织密封剂。
ACS Appl Mater Interfaces. 2017 Jul 19;9(28):23409-23419. doi: 10.1021/acsami.7b04932. Epub 2017 Jul 6.
8
The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels.氧化对光交联海藻酸盐水凝胶降解的影响。
Biomaterials. 2012 May;33(13):3503-14. doi: 10.1016/j.biomaterials.2012.01.041. Epub 2012 Feb 13.
9
Synthesis and evaluation of dual crosslinked alginate microbeads.双重交联海藻酸微球的合成与评价。
Acta Biomater. 2018 Jan;65:53-65. doi: 10.1016/j.actbio.2017.10.046. Epub 2017 Nov 1.

引用本文的文献

3
3D Bioprinting tissue analogs: Current development and translational implications.3D生物打印组织类似物:当前进展及转化意义
J Tissue Eng. 2023 Jul 13;14:20417314231187113. doi: 10.1177/20417314231187113. eCollection 2023 Jan-Dec.

本文引用的文献

2
Alginate Microencapsulation for Three-Dimensional In Vitro Cell Culture.海藻酸盐微胶囊化用于三维体外细胞培养。
ACS Biomater Sci Eng. 2021 Jul 12;7(7):2864-2879. doi: 10.1021/acsbiomaterials.0c00457. Epub 2020 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验