College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
Biosens Bioelectron. 2022 Feb 1;197:113734. doi: 10.1016/j.bios.2021.113734. Epub 2021 Oct 30.
The performance of photoelectrochemical (PEC) analysis system relies closely on the properties of the photoelectric electrodes. It is of great significance to integrate photoactive materials with flexible substrates to construct ultra-sensitive PEC sensors for practical application. This work reports a novel photoelectrode developed by immobilizing α-FeO nanoparticles (NPs)/defect-rich carbon nitride (d-CN), an excellent Z-scheme heterojunction photoelectric material, onto three-dimensional (3D) flexible carbon fiber textile. Specifically, 3D hierarchical structure of flexible carbon fiber textile provides larger specific surface area and higher mechanical strength than traditional electrodes, resulting in more reaction sites and faster reaction kinetics to achieve signal amplification. Simultaneously, α-FeO/d-CN Z-scheme heterojunction exhibits enhanced light absorption capability and high redox ability, thus dramatically improving the PEC performance. This photoelectrode was used to construct a flexible PEC aptasensor for ultrasensitive detection of penbritin, demonstrating excellent performance in terms of wide linear range (0.5 pM-50 nM), low detection limit (0.0125 pM) and high stability. The design principle is applicable to the manufacture of other photoelectric sensing systems, which provides an avenue for the development of portable environmental analysis and field diagnostics equipment.
光电化学(PEC)分析系统的性能与光电电极的性能密切相关。将光活性材料与柔性基底集成,构建用于实际应用的超灵敏 PEC 传感器具有重要意义。本工作报道了一种新型光电极,该光电极通过将α-FeO 纳米颗粒(NPs)/缺陷富氮化碳(d-CN),一种优秀的 Z 型异质结光电材料,固定在三维(3D)柔性碳纤维纺织品上而开发。具体来说,3D 柔性碳纤维纺织品的分层结构比传统电极具有更大的比表面积和更高的机械强度,从而提供了更多的反应位点和更快的反应动力学,以实现信号放大。同时,α-FeO/d-CN Z 型异质结表现出增强的光吸收能力和高氧化还原能力,从而极大地提高了 PEC 性能。该光电极被用于构建用于超灵敏检测青霉素的柔性 PEC 适体传感器,在宽线性范围(0.5 pM-50 nM)、低检测限(0.0125 pM)和高稳定性方面表现出优异的性能。该设计原理适用于其他光电传感系统的制造,为便携式环境分析和现场诊断设备的发展提供了途径。