Suppr超能文献

钼掺杂 BiOBr 纳米花增强可见光光催化磺胺降解。

Visible light photocatalytic degradation of sulfanilamide enhanced by Mo doping of BiOBr nanoflowers.

机构信息

Laboratory for Micro-sized Functional Materials & College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048, PR China.

Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT) and Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.

出版信息

J Hazard Mater. 2022 Feb 15;424(Pt C):127563. doi: 10.1016/j.jhazmat.2021.127563. Epub 2021 Oct 24.

Abstract

Design of high-efficiency visible light photocatalysts is critical in the degradation of antibiotic pollutants in water, a key step towards environmental remediation. In the present study, Mo-doped BiOBr nanocomposites are prepared hydrothermally at different feed ratios, and display remarkable visible light photocatalytic activity towards the degradation of sulfanilamide, a common antibacterial drug. Among the series, the sample with 2% Mo dopants exhibits the best photocatalytic activity, with a performance 2.3 times better that of undoped BiOBr. This is attributed to Mo doping that narrows the band gap of BiOBr and enhances absorption in the visible region. Additional contributions arise from the unique materials morphology, where the highly exposed (102) crystal planes enrich the photocatalytic active sites, and facilitate the adsorption of sulfanilamide molecules and their eventual attack by free radicals. The reaction mechanism and pathways are then unraveled based on theoretical calculations of the Fukui index and liquid chromatography/mass spectrometry measurements of the reaction intermediates and products. Results from this study indicate that deliberate structural engineering based on heteroatom doping and morphological control may serve as an effective strategy in the design of highly active photocatalysts towards antibiotic degradation.

摘要

设计高效可见光光催化剂对于水中抗生素污染物的降解至关重要,这是环境修复的关键步骤。在本研究中,采用水热法制备了不同进料比的 Mo 掺杂 BiOBr 纳米复合材料,对磺胺类药物的降解表现出显著的可见光光催化活性。在该系列中,掺杂 2% Mo 的样品表现出最好的光催化活性,其性能比未掺杂的 BiOBr 提高了 2.3 倍。这归因于 Mo 掺杂缩小了 BiOBr 的带隙并增强了可见光区域的吸收。此外,独特的材料形态也有贡献,其中高度暴露的(102)晶面丰富了光催化活性位点,并促进了磺胺类分子的吸附及其最终被自由基攻击。然后根据福井指数的理论计算和反应中间体及产物的液相色谱/质谱测量,揭示了反应机理和途径。本研究结果表明,基于杂原子掺杂和形态控制的刻意结构工程可能是设计高效光催化剂降解抗生素的有效策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验