School of Biosciences, Cardiff University, Cardiff, United Kingdom; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Russian Federation.
School of Biosciences, Cardiff University, Cardiff, United Kingdom; Metabolic Signalling, MRC London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
J Biol Chem. 2021 Dec;297(6):101375. doi: 10.1016/j.jbc.2021.101375. Epub 2021 Nov 2.
Synucleins, a family of three proteins highly expressed in neurons, are predominantly known for the direct involvement of α-synuclein in the etiology and pathogenesis of Parkinson's and certain other neurodegenerative diseases, but their precise physiological functions are still not fully understood. Previous studies have demonstrated the importance of α-synuclein as a modulator of various mechanisms implicated in chemical neurotransmission, but information concerning the involvement of other synuclein family members, β-synuclein and γ-synuclein, in molecular processes within presynaptic terminals is limited. Here, we demonstrated that the vesicular monoamine transporter 2-dependent dopamine uptake by synaptic vesicles isolated from the striatum of mice lacking β-synuclein is significantly reduced. Reciprocally, reintroduction, either in vivo or in vitro, of β-synuclein but not α-synuclein or γ-synuclein improves uptake by triple α/β/γ-synuclein-deficient striatal vesicles. We also showed that the resistance of dopaminergic neurons of the substantia nigra pars compacta to subchronic administration of the Parkinson's disease-inducing prodrug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine depends on the presence of β-synuclein but only when one or both other synucleins are absent. Furthermore, proteomic analysis of synuclein-deficient synaptic vesicles versus those containing only β-synuclein revealed differences in their protein compositions. We suggest that the observed potentiation of dopamine uptake by β-synuclein might be caused by different protein architecture of the synaptic vesicles. It is also feasible that such structural changes improve synaptic vesicle sequestration of 1-methyl-4-phenylpyridinium, a toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, which would explain why dopaminergic neurons expressing β-synuclein and lacking α-synuclein and/or γ-synuclein are resistant to this neurotoxin.
突触核蛋白是一族在神经元中高度表达的蛋白,主要因 α-突触核蛋白直接参与帕金森病和某些其他神经退行性疾病的病因和发病机制而为人所知,但它们的确切生理功能仍不完全清楚。先前的研究表明 α-突触核蛋白作为化学神经传递中涉及的各种机制的调节剂的重要性,但关于其他突触核蛋白家族成员 β-突触核蛋白和 γ-突触核蛋白参与突触前末梢内分子过程的信息有限。在这里,我们证明了从缺乏β-突触核蛋白的小鼠纹状体分离的突触小体中的囊泡依赖性单胺转运体 2 依赖性多巴胺摄取显著减少。相反,无论是在体内还是体外,β-突触核蛋白的重新引入(而不是 α-突触核蛋白或 γ-突触核蛋白)都可以改善三重α/β/γ-突触核蛋白缺陷纹状体囊泡的摄取。我们还表明,黑质致密部多巴胺能神经元对帕金森病诱导前药 1-甲基-4-苯基-1,2,3,6-四氢吡啶的亚慢性给药的抗性取决于β-突触核蛋白的存在,但只有当一种或两种其他突触核蛋白不存在时才取决于β-突触核蛋白的存在。此外,与仅含有β-突触核蛋白的突触核蛋白缺陷型突触小体相比,对突触核蛋白缺失型突触小体的蛋白质组学分析揭示了它们蛋白质组成的差异。我们认为观察到的β-突触核蛋白对多巴胺摄取的增强可能是由于突触小体的不同蛋白质结构。也有可能是这种结构变化改善了 1-甲基-4-苯基吡啶𬭩(1-甲基-4-苯基-1,2,3,6-四氢吡啶的毒性代谢物)的突触小体隔离,这可以解释为什么表达β-突触核蛋白且缺乏α-突触核蛋白和/或γ-突触核蛋白的多巴胺能神经元对这种神经毒素具有抗性。