University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.
Nat Cell Biol. 2021 Nov;23(11):1148-1162. doi: 10.1038/s41556-021-00786-8. Epub 2021 Nov 4.
Actin filaments generate mechanical forces that drive membrane movements during trafficking, endocytosis and cell migration. Reciprocally, adaptations of actin networks to forces regulate their assembly and architecture. Yet, a demonstration of forces acting on actin regulators at actin assembly sites in cells is missing. Here we show that local forces arising from actin filament elongation mechanically control WAVE regulatory complex (WRC) dynamics and function, that is, Arp2/3 complex activation in the lamellipodium. Single-protein tracking revealed WRC lateral movements along the lamellipodium tip, driven by elongation of actin filaments and correlating with WRC turnover. The use of optical tweezers to mechanically manipulate functional WRC showed that piconewton forces, as generated by single-filament elongation, dissociated WRC from the lamellipodium tip. WRC activation correlated with its trapping, dwell time and the binding strength at the lamellipodium tip. WRC crosslinking, hindering its mechanical dissociation, increased WRC dwell time and Arp2/3-dependent membrane protrusion. Thus, forces generated by individual actin filaments on their regulators can mechanically tune their turnover and hence activity during cell migration.
肌动蛋白丝产生机械力,在运输、内吞作用和细胞迁移过程中驱动膜运动。反过来,肌动蛋白网络对力的适应调节其组装和结构。然而,细胞中在肌动蛋白组装部位作用于肌动蛋白调节剂的力的证明仍然缺失。在这里,我们表明,来自肌动蛋白丝延伸的局部力机械控制 WAVE 调节复合物 (WRC) 的动力学和功能,即,在片状伪足中 Arp2/3 复合物的激活。单蛋白追踪显示 WRC 沿着片状伪足尖端的侧向运动,由肌动蛋白丝的延伸驱动,并与 WRC 周转相关。使用光镊机械操纵功能性 WRC 表明,单丝延伸产生的皮牛顿力将 WRC 从片状伪足尖端解离。WRC 激活与它的捕获、停留时间和在片状伪足尖端的结合强度相关。WRC 交联,阻碍其机械解离,增加了 WRC 的停留时间和 Arp2/3 依赖性的膜突出。因此,单个肌动蛋白丝在其调节剂上产生的力可以机械地调节它们在细胞迁移过程中的周转率和活性。