Suppr超能文献

流-电分裂流薄粒子分离装置的实验、理论和模拟。

Experiment, theory, and simulation of a flow-electrical-split flow thin particle separation device.

机构信息

Department of Mechanical Engineering, University of Utah, Salt Lake, UT 84112, USA.

Department of Mechanical Engineering, University of Utah, Salt Lake, UT 84112, USA.

出版信息

J Chromatogr A. 2021 Dec 6;1659:462634. doi: 10.1016/j.chroma.2021.462634. Epub 2021 Oct 19.

Abstract

Herein, we describe the simulation of a novel flow-electrical-split flow thin (Fl-El-SPLITT) separation device and validate it using existing theory and experimentation for the first time using polystyrene particles of 28 and 1000 nm diameters. The fraction of particles exiting selected ports with DC El-SPLITT is predicted with existing theory, but the theory does not include AC fields, nor does it incorporate the use of crossflows. Using DC fields the El-SPLITT simulation and theory calculated transition points result in the same values. These calculated values accurately predict the experimentally obtained transition point using a 50:50 outlet splitting plane (OSP). Relative to actual experimentally obtained transition points, the calculated values lag behind for a 90:10 OSP, and lead ahead for a 10:90 OSP. The simulation explains trends seen in AC testing, and reasonably predicts the fraction of particles exiting each port. As DC current increases, the amount of AC current required to scatter the particles away from the DC-intended port decreases. The simulation also models a crossflow in a SPLITT system with a DC current applied in a direction opposite the crossflow with some success. Long term steady-state testing without crossflows shows a DC voltage dependent loss of particles. At 8 V DC, total recovery of 28 and 1000 nm particles was 70% and 26%, respectively. This work effectively models a new Fl-El-SPLITT system via Matlab simulation by demonstrating key experimental results such as the influence of DC, AC, and crossflows on the SPLITT separation of polystyrene particles.

摘要

在此,我们描述了一种新型的流-电-分流流动薄(Fl-El-SPLITT)分离装置的模拟,并首次使用 28nm 和 1000nm 直径的聚苯乙烯颗粒,利用现有理论和实验对其进行了验证。使用现有理论预测了带有直流 El-SPLITT 的选定端口的粒子分数,但该理论不包括交流场,也不包括使用横流。使用直流场,El-SPLITT 模拟和理论计算的转换点产生相同的值。这些计算值准确地预测了使用 50:50 出口分流平面(OSP)获得的实验转换点。相对于实际获得的实验转换点,计算值滞后于 90:10 OSP,领先于 10:90 OSP。该模拟解释了在交流测试中看到的趋势,并合理地预测了每个端口的粒子逸出量。随着直流电流的增加,将粒子散射到与直流预期端口相反的方向所需的交流电流减小。该模拟还以一定的成功模拟了在施加直流电流的方向与横流相反的 SPLITT 系统中的横流。没有横流的长期稳态测试显示出与直流相关的粒子损失。在 8V 直流时,28nm 和 1000nm 颗粒的总回收率分别为 70%和 26%。这项工作通过 Matlab 模拟有效地模拟了一种新的 Fl-El-SPLITT 系统,展示了直流、交流和横流对聚苯乙烯颗粒的 SPLITT 分离的关键实验结果。

相似文献

1
Experiment, theory, and simulation of a flow-electrical-split flow thin particle separation device.
J Chromatogr A. 2021 Dec 6;1659:462634. doi: 10.1016/j.chroma.2021.462634. Epub 2021 Oct 19.
2
Development and Testing of a Continuous Flow-Electrical-Split-Flow Lateral Transport Thin Separation System (Fl-El-SPLITT).
Anal Chem. 2021 Feb 9;93(5):2888-2897. doi: 10.1021/acs.analchem.0c04345. Epub 2021 Jan 21.
3
General theory for flow optimisation of split-flow thin fractionation.
J Chromatogr A. 2003 Aug 22;1010(1):87-94. doi: 10.1016/s0021-9673(03)01025-2.
4
Fractionation of surface sediment fines based on a coupled sieve-SPLITT (split flow thin cell) method.
Water Res. 2005 May;39(10):1935-45. doi: 10.1016/j.watres.2005.04.005.
5
Mathematical modeling of full feed depletion split-flow lateral-transport thin self-adjustable channels (FFD-SPLITT-SA).
J Chromatogr A. 2018 Jun 1;1552:67-72. doi: 10.1016/j.chroma.2018.03.045. Epub 2018 Mar 23.
6
Magnetic split-flow thin fractionation of magnetically susceptible particles.
J Chromatogr A. 1999 Oct 1;857(1-2):193-204. doi: 10.1016/s0021-9673(99)00775-x.
7
Continuous separation of particles from macromolecules in split-flow thin (SPLITT) cells.
J Chem Technol Biotechnol. 1991;50(1):43-56. doi: 10.1002/jctb.280500106.
8
Behaviour of environmental aquatic nanocolloids when separated by split-flow thin-cell fractionation (SPLITT).
Sci Total Environ. 2008 Nov 1;405(1-3):317-23. doi: 10.1016/j.scitotenv.2008.05.032. Epub 2008 Jul 11.
9
Effect of flow development region and fringing magnetic force field on annular split-flow thin fractionation.
J Chromatogr A. 2004 Jul 9;1042(1-2):137-45. doi: 10.1016/j.chroma.2004.05.018.
10
Combining DC and AC electric fields with deterministic lateral displacement for micro- and nano-particle separation.
Biomicrofluidics. 2019 Oct 23;13(5):054110. doi: 10.1063/1.5124475. eCollection 2019 Sep.

本文引用的文献

1
Development and Testing of a Continuous Flow-Electrical-Split-Flow Lateral Transport Thin Separation System (Fl-El-SPLITT).
Anal Chem. 2021 Feb 9;93(5):2888-2897. doi: 10.1021/acs.analchem.0c04345. Epub 2021 Jan 21.
2
Circuit modification in electrical field flow fractionation systems generating higher resolution separation of nanoparticles.
J Chromatogr A. 2014 Oct 24;1365:164-72. doi: 10.1016/j.chroma.2014.08.097. Epub 2014 Sep 8.
3
Improved theory of cyclical electrical field flow fractionation.
Electrophoresis. 2006 Jul;27(14):2833-43. doi: 10.1002/elps.200500831.
4
A microfabricated electrical SPLITT system.
Lab Chip. 2006 Jan;6(1):105-14. doi: 10.1039/b504936a. Epub 2005 Dec 5.
5
Electrical field-flow fractionation in particle separation. 1. Monodisperse standards.
Anal Chem. 1993 Jul 1;65(13):1764-72. doi: 10.1021/ac00061a021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验