Department of Mechanical Engineering, University of Utah, Salt Lake, UT 84112, USA.
Department of Mechanical Engineering, University of Utah, Salt Lake, UT 84112, USA.
J Chromatogr A. 2021 Dec 6;1659:462634. doi: 10.1016/j.chroma.2021.462634. Epub 2021 Oct 19.
Herein, we describe the simulation of a novel flow-electrical-split flow thin (Fl-El-SPLITT) separation device and validate it using existing theory and experimentation for the first time using polystyrene particles of 28 and 1000 nm diameters. The fraction of particles exiting selected ports with DC El-SPLITT is predicted with existing theory, but the theory does not include AC fields, nor does it incorporate the use of crossflows. Using DC fields the El-SPLITT simulation and theory calculated transition points result in the same values. These calculated values accurately predict the experimentally obtained transition point using a 50:50 outlet splitting plane (OSP). Relative to actual experimentally obtained transition points, the calculated values lag behind for a 90:10 OSP, and lead ahead for a 10:90 OSP. The simulation explains trends seen in AC testing, and reasonably predicts the fraction of particles exiting each port. As DC current increases, the amount of AC current required to scatter the particles away from the DC-intended port decreases. The simulation also models a crossflow in a SPLITT system with a DC current applied in a direction opposite the crossflow with some success. Long term steady-state testing without crossflows shows a DC voltage dependent loss of particles. At 8 V DC, total recovery of 28 and 1000 nm particles was 70% and 26%, respectively. This work effectively models a new Fl-El-SPLITT system via Matlab simulation by demonstrating key experimental results such as the influence of DC, AC, and crossflows on the SPLITT separation of polystyrene particles.
在此,我们描述了一种新型的流-电-分流流动薄(Fl-El-SPLITT)分离装置的模拟,并首次使用 28nm 和 1000nm 直径的聚苯乙烯颗粒,利用现有理论和实验对其进行了验证。使用现有理论预测了带有直流 El-SPLITT 的选定端口的粒子分数,但该理论不包括交流场,也不包括使用横流。使用直流场,El-SPLITT 模拟和理论计算的转换点产生相同的值。这些计算值准确地预测了使用 50:50 出口分流平面(OSP)获得的实验转换点。相对于实际获得的实验转换点,计算值滞后于 90:10 OSP,领先于 10:90 OSP。该模拟解释了在交流测试中看到的趋势,并合理地预测了每个端口的粒子逸出量。随着直流电流的增加,将粒子散射到与直流预期端口相反的方向所需的交流电流减小。该模拟还以一定的成功模拟了在施加直流电流的方向与横流相反的 SPLITT 系统中的横流。没有横流的长期稳态测试显示出与直流相关的粒子损失。在 8V 直流时,28nm 和 1000nm 颗粒的总回收率分别为 70%和 26%。这项工作通过 Matlab 模拟有效地模拟了一种新的 Fl-El-SPLITT 系统,展示了直流、交流和横流对聚苯乙烯颗粒的 SPLITT 分离的关键实验结果。