Suppr超能文献

结合直流和交流电场与确定性侧向位移用于微米和纳米颗粒分离。

Combining DC and AC electric fields with deterministic lateral displacement for micro- and nano-particle separation.

作者信息

Calero Victor, Garcia-Sanchez Pablo, Ramos Antonio, Morgan Hywel

机构信息

School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom.

Departamento de Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Seville 41012, Spain.

出版信息

Biomicrofluidics. 2019 Oct 23;13(5):054110. doi: 10.1063/1.5124475. eCollection 2019 Sep.

Abstract

This paper describes the behavior of particles in a deterministic lateral displacement (DLD) separation device with DC and AC electric fields applied orthogonal to the fluid flow. As proof of principle, we demonstrate tunable microparticle and nanoparticle separation and fractionation depending on both particle size and zeta potential. DLD is a microfluidic technique that performs size-based binary separation of particles in a continuous flow. Here, we explore how the application of both DC and AC electric fields (separate or together) can be used to improve separation in a DLD device. We show that particles significantly smaller than the critical diameter of the device can be efficiently separated by applying orthogonal electric fields. Following the application of a DC voltage, Faradaic processes at the electrodes cause local changes in medium conductivity. This conductivity change creates an electric field gradient across the channel that results in a nonuniform electrophoretic velocity orthogonal to the primary flow direction. This phenomenon causes particles to focus on tight bands as they flow along the channel countering the effect of particle diffusion. It is shown that the final lateral displacement of particles depends on both particle size and zeta potential. Experiments with six different types of negatively charged particles and five different sizes (from 100 nm to 3 m) and different zeta potential demonstrate how a DC electric field combined with AC electric fields (that causes negative-dielectrophoresis particle deviation) could be used for fractionation of particles on the nanoscale in microscale devices.

摘要

本文描述了在与流体流动方向正交施加直流和交流电场的确定性侧向位移(DLD)分离装置中颗粒的行为。作为原理验证,我们展示了根据颗粒大小和zeta电位实现的可调谐微粒和纳米颗粒分离及分级。DLD是一种微流控技术,可在连续流动中对颗粒进行基于尺寸的二元分离。在此,我们探讨如何应用直流和交流电场(单独或一起)来改善DLD装置中的分离效果。我们表明,通过施加正交电场,可以有效分离比装置临界直径小得多的颗粒。施加直流电压后,电极处的法拉第过程会导致介质电导率发生局部变化。这种电导率变化会在通道中产生电场梯度,从而导致与主流方向正交的非均匀电泳速度。这种现象会使颗粒在沿通道流动时聚焦成紧密的条带,抵消颗粒扩散的影响。结果表明,颗粒的最终侧向位移取决于颗粒大小和zeta电位。对六种不同类型的带负电颗粒以及五种不同尺寸(从100纳米到3微米)且具有不同zeta电位的颗粒进行的实验表明,直流电场与交流电场(导致负介电泳颗粒偏移)相结合可用于在微尺度装置中对纳米级颗粒进行分级。

相似文献

6
Charge-Based Separation of Micro- and Nanoparticles.基于电荷的微米和纳米颗粒分离
Micromachines (Basel). 2020 Nov 18;11(11):1014. doi: 10.3390/mi11111014.

引用本文的文献

1
Hydrodynamic Chromatography with Deterministic Lateral Displacement Effect.具有确定性侧向位移效应的流体动力学色谱法。
Anal Chem. 2025 Jun 17;97(23):12223-12232. doi: 10.1021/acs.analchem.5c00947. Epub 2025 Jun 3.
4
Microfluidic Nanoparticle Separation for Precision Medicine.用于精准医疗的微流控纳米颗粒分离
Adv Sci (Weinh). 2025 Jan;12(4):e2411278. doi: 10.1002/advs.202411278. Epub 2024 Dec 4.
10
Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles.用于生物颗粒微流控操作的介电泳力产生方法。
ACS Biomater Sci Eng. 2021 Jun 14;7(6):2043-2063. doi: 10.1021/acsbiomaterials.1c00083. Epub 2021 Apr 19.

本文引用的文献

4
On the recent developments of insulator-based dielectrophoresis: A review.基于绝缘子的介电泳的最新进展:综述。
Electrophoresis. 2019 Feb;40(3):358-375. doi: 10.1002/elps.201800285. Epub 2018 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验