Calero Victor, Garcia-Sanchez Pablo, Ramos Antonio, Morgan Hywel
School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom.
Departamento de Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Seville 41012, Spain.
Biomicrofluidics. 2019 Oct 23;13(5):054110. doi: 10.1063/1.5124475. eCollection 2019 Sep.
This paper describes the behavior of particles in a deterministic lateral displacement (DLD) separation device with DC and AC electric fields applied orthogonal to the fluid flow. As proof of principle, we demonstrate tunable microparticle and nanoparticle separation and fractionation depending on both particle size and zeta potential. DLD is a microfluidic technique that performs size-based binary separation of particles in a continuous flow. Here, we explore how the application of both DC and AC electric fields (separate or together) can be used to improve separation in a DLD device. We show that particles significantly smaller than the critical diameter of the device can be efficiently separated by applying orthogonal electric fields. Following the application of a DC voltage, Faradaic processes at the electrodes cause local changes in medium conductivity. This conductivity change creates an electric field gradient across the channel that results in a nonuniform electrophoretic velocity orthogonal to the primary flow direction. This phenomenon causes particles to focus on tight bands as they flow along the channel countering the effect of particle diffusion. It is shown that the final lateral displacement of particles depends on both particle size and zeta potential. Experiments with six different types of negatively charged particles and five different sizes (from 100 nm to 3 m) and different zeta potential demonstrate how a DC electric field combined with AC electric fields (that causes negative-dielectrophoresis particle deviation) could be used for fractionation of particles on the nanoscale in microscale devices.
本文描述了在与流体流动方向正交施加直流和交流电场的确定性侧向位移(DLD)分离装置中颗粒的行为。作为原理验证,我们展示了根据颗粒大小和zeta电位实现的可调谐微粒和纳米颗粒分离及分级。DLD是一种微流控技术,可在连续流动中对颗粒进行基于尺寸的二元分离。在此,我们探讨如何应用直流和交流电场(单独或一起)来改善DLD装置中的分离效果。我们表明,通过施加正交电场,可以有效分离比装置临界直径小得多的颗粒。施加直流电压后,电极处的法拉第过程会导致介质电导率发生局部变化。这种电导率变化会在通道中产生电场梯度,从而导致与主流方向正交的非均匀电泳速度。这种现象会使颗粒在沿通道流动时聚焦成紧密的条带,抵消颗粒扩散的影响。结果表明,颗粒的最终侧向位移取决于颗粒大小和zeta电位。对六种不同类型的带负电颗粒以及五种不同尺寸(从100纳米到3微米)且具有不同zeta电位的颗粒进行的实验表明,直流电场与交流电场(导致负介电泳颗粒偏移)相结合可用于在微尺度装置中对纳米级颗粒进行分级。