Suppr超能文献

通过低温冷却离子的阈值光解离测定SmO键能。

Determination of the SmO bond energy by threshold photodissociation of the cryogenically cooled ion.

作者信息

Lachowicz Anton, Perez Evan H, Shuman Nicholas S, Ard Shaun G, Viggiano Albert A, Armentrout P B, Goings Joshua J, Sharma Prachi, Li Xiaosong, Johnson Mark A

机构信息

Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.

Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, Albuquerque, New Mexico 87117, USA.

出版信息

J Chem Phys. 2021 Nov 7;155(17):174303. doi: 10.1063/5.0068734.

Abstract

The SmO bond energy has been measured by monitoring the threshold for photodissociation of the cryogenically cooled ion. The action spectrum features a very sharp onset, indicating a bond energy of 5.596 ± 0.004 eV. This value, when combined with the literature value of the samarium ionization energy, indicates that the chemi-ionization reaction of atomic Sm with atomic oxygen is endothermic by 0.048 ± 0.004 eV, which has important implications on the reactivity of Sm atoms released into the upper atmosphere. The SmO ion was prepared by electrospray ionization followed by collisional breakup of two different precursors and characterized by the vibrational spectrum of the He-tagged ion. The UV photodissociation threshold is similar for the 10 K bare ion and the He tagged ion, which rules out the possible role of metastable electronically excited states. Reanalysis and remeasurement of previous reaction kinetics experiments that are dependent on D(SmO) are included, bringing all experimental results in accord.

摘要

通过监测低温冷却离子的光解离阈值,已测量出 SmO 的键能。作用光谱具有非常尖锐的起始点,表明键能为 5.596 ± 0.004 电子伏特。该值与钐电离能的文献值相结合,表明原子态 Sm 与原子态氧的化学电离反应吸热 0.048 ± 0.004 电子伏特,这对释放到高层大气中的 Sm 原子的反应性具有重要意义。SmO 离子通过电喷雾电离制备,随后两种不同前体发生碰撞分解,并通过氦标记离子的振动光谱进行表征。10K 裸离子和氦标记离子的紫外光解离阈值相似,这排除了亚稳电子激发态的可能作用。对之前依赖于 D(SmO) 的反应动力学实验进行了重新分析和重新测量,使所有实验结果达成一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验