Ji Zhicheng, Ji Hongkai
Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina 27710, United States.
Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States.
J Am Stat Assoc. 2021;116(534):471-474. doi: 10.1080/01621459.2021.1880920. Epub 2021 Jun 8.
Exponential-family singular value decomposition (eSVD) is a new approach for embedding multivariate data into a lower-dimensional space. It provides an elegant dimension reduction framework with flexibility to handle one-parameter exponential family distributions and proven consistency. This approach adds a valuable new tool to the toolbox of data analysts. Here we discuss a number of open problems and challenges that remain to be addressed in the future in order to unleash the full potential of eSVD and other similar approaches.
指数族奇异值分解(eSVD)是一种将多变量数据嵌入低维空间的新方法。它提供了一个优雅的降维框架,能够灵活处理单参数指数族分布且具有已证明的一致性。这种方法为数据分析人员的工具库增添了一个有价值的新工具。在此,我们讨论了一些未来仍有待解决的开放问题和挑战,以便充分发挥eSVD及其他类似方法的全部潜力。