Tassin Tara C, Barylko Barbara, Hedde Per Niklas, Chen Yan, Binns Derk D, James Nicholas G, Mueller Joachim D, Jameson David M, Taussig Ronald, Albanesi Joseph P
Department of Pharmacology, U.T. Southwestern Medical Center, Dallas, TX, United States.
Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States.
Front Cell Neurosci. 2021 Oct 20;15:745940. doi: 10.3389/fncel.2021.745940. eCollection 2021.
Mutations in the gene encoding dynamin 2 (DNM2), a GTPase that catalyzes membrane constriction and fission, are associated with two autosomal-dominant motor disorders, Charcot-Marie-Tooth disease (CMT) and centronuclear myopathy (CNM), which affect nerve and muscle, respectively. Many of these mutations affect the pleckstrin homology domain of DNM2, yet there is almost no overlap between the sets of mutations that cause CMT or CNM. A subset of CMT-linked mutations inhibit the interaction of DNM2 with phosphatidylinositol (4,5) bisphosphate, which is essential for DNM2 function in endocytosis. In contrast, CNM-linked mutations inhibit intramolecular interactions that normally suppress dynamin self-assembly and GTPase activation. Hence, CNM-linked DNM2 mutants form abnormally stable polymers and express enhanced assembly-dependent GTPase activation. These distinct effects of CMT and CNM mutations are consistent with current findings that DNM2-dependent CMT and CNM are loss-of-function and gain-of-function diseases, respectively. In this study, we present evidence that at least one CMT-causing DNM2 mutant (ΔDEE; lacking residues DEE) forms polymers that, like the CNM mutants, are resistant to disassembly and display enhanced GTPase activation. We further show that the ΔDEE mutant undergoes 2-3-fold higher levels of tyrosine phosphorylation than wild-type DNM2. These results suggest that molecular mechanisms underlying the absence of pathogenic overlap between DNM2-dependent CMT and CNM should be re-examined.
发动蛋白2(DNM2)是一种催化膜收缩和裂变的GTP酶,其编码基因的突变与两种常染色体显性运动障碍相关,即夏科-马里-图思病(CMT)和中央核性肌病(CNM),它们分别影响神经和肌肉。这些突变中的许多影响DNM2的普列克底物蛋白同源结构域,但导致CMT或CNM的突变组之间几乎没有重叠。一部分与CMT相关的突变抑制DNM2与磷脂酰肌醇(4,5)二磷酸的相互作用,这对DNM2在内吞作用中的功能至关重要。相比之下,与CNM相关的突变抑制通常抑制发动蛋白自组装和GTP酶激活的分子内相互作用。因此,与CNM相关的DNM2突变体形成异常稳定的聚合物,并表现出增强的组装依赖性GTP酶激活。CMT和CNM突变的这些不同影响与目前的研究结果一致,即依赖DNM2的CMT和CNM分别是功能丧失和功能获得性疾病。在本研究中,我们提供证据表明,至少一种导致CMT的DNM2突变体(ΔDEE;缺失DEE残基)形成的聚合物,与CNM突变体一样,抗解聚并表现出增强的GTP酶激活。我们进一步表明,ΔDEE突变体的酪氨酸磷酸化水平比野生型DNM2高2至3倍。这些结果表明,依赖DNM2的CMT和CNM之间不存在致病重叠的分子机制应重新审视。