Suppr超能文献

一种基于熵和区分测度的q阶正交对模糊ARAS方法:可持续回收合作伙伴选择的应用

A q-rung orthopair fuzzy ARAS method based on entropy and discrimination measures: an application of sustainable recycling partner selection.

作者信息

Mishra Arunodaya Raj, Rani Pratibha

机构信息

Department of Mathematics, Government College Jaitwara, Satna, Madhya Pradesh 485221 India.

Department of Mathematics, Chandigarh University, Mohali, Punjab 140413 India.

出版信息

J Ambient Intell Humaniz Comput. 2023;14(6):6897-6918. doi: 10.1007/s12652-021-03549-3. Epub 2021 Nov 2.

Abstract

The necessity and policy of eco-economy stimulate enterprises to attain sustainability by executing supply chain management. Generally, the evaluation process of sustainable recycling partner (SRP) selection is treated as a multi-criteria decision-making problem due to existence of numerous influencing aspects. To tackle the uncertain information during the process of SRP selection, the q-rung orthopair fuzzy sets have a good choice, which can refer to a broader range of uncertain decision-making information. Thus, this study presents a combined framework with the additive ratio assessment (ARAS) approach, notions of q-rung orthopair fuzzy set (q-ROFS) and information measures, and further implements to tackle the multi-criteria SRP selection problem with q-ROFSs setting. In this procedure, the criteria weights are evaluated with the integration of the subjective weights given by decision-experts and the objective weights obtain from the entropy and discrimination measures-based approach. For this, new entropy and discrimination measures are introduced for q-ROFSs and discussed the effectiveness of proposed measures. To elucidate the applicability of the present methodology, a case study related to sustainable recycling partner assessment is presented under q-ROFSs context. Sensitivity analysis is conducted over diverse set of criteria weights to verify the robustness of introduced framework. The results of the sensitivity analysis signify that the recycling partner S constantly secures the best rank and despites how sub-criteria weights differ. A comparison with extant methods is made to validate of the results of proposed one. The findings of the work verify that the developed framework is more valuable and well consistent with formerly proposed decision-making models.

摘要

生态经济的必要性和政策促使企业通过实施供应链管理来实现可持续发展。一般来说,由于存在众多影响因素,可持续回收合作伙伴(SRP)选择的评估过程被视为一个多标准决策问题。为了解决SRP选择过程中的不确定信息,q阶正交对模糊集是一个很好的选择,它可以涵盖更广泛的不确定决策信息。因此,本研究提出了一个结合加法比率评估(ARAS)方法、q阶正交对模糊集(q-ROFS)概念和信息测度的框架,并进一步用于解决具有q-ROFS设置的多标准SRP选择问题。在此过程中,通过整合决策专家给出的主观权重和基于熵与区分测度方法获得的客观权重来评估标准权重。为此,引入了针对q-ROFS的新熵和区分测度,并讨论了所提测度的有效性。为了阐明本方法的适用性,在q-ROFS背景下给出了一个与可持续回收合作伙伴评估相关的案例研究。对不同的标准权重集进行了敏感性分析,以验证所引入框架的稳健性。敏感性分析结果表明,回收合作伙伴S始终获得最佳排名,无论子标准权重如何变化。与现有方法进行了比较,以验证所提方法的结果。研究结果验证了所开发的框架更有价值,并且与先前提出的决策模型高度一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验