Chen Shuang, Ren Jian, Ye KeTing, Li FeiYan
School of Advanced Interdisciplinary Studies, Hunan University of Technology and Business, No.569, Yuelu Avenue, Changsha, 410205, China.
Xiangjiang Laboratory, Hunan University of Technology and Business, No.569, Yuelu Avenue, Changsha, 410205, China.
Sci Rep. 2024 Jun 28;14(1):14942. doi: 10.1038/s41598-024-64765-3.
A novel interval valued p,q Rung orthopair fuzzy (IVPQ-ROF) multiple attribute group decision making (MAGDM) method for sustainable supplier selection (SSS) is proposed in this paper. This study mainly contains two research points: (1) tackling the interrelation between attributes; and (2) describing the psychological state and risk attitude of decision makers (DMs). For the first research point, we introduce the Archimedean operation rules for interval valued p,q Rung orthopair fuzzy sets (IVPQ-ROFSs), then the generalized interval valued p, q Rung orthopair fuzzy Maclaurin symmetric mean (GIVPQ-ROFMSM) operator and the generalized interval valued p, q Rung orthopair fuzzy weighted Maclaurin symmetric mean (GIVPQ-ROFWMSM) operator are defined to reflect the correlation between attributes. For the second research point, we introduce the positive ideal degree (PID) and negative ideal degree (NID) based on projection of IVPQ-ROFSs, and modified regret theory. Both of them consider the best alternative and worst alternative, so as to reflect the psychological state and risk attitude of DMs. Finally, a SSS problem is presented to manifest the effectiveness of the designed method. We also provide sensitivity analysis and comparative analysis to further demonstrate the rationality and validity of the proposed method.
本文提出了一种用于可持续供应商选择(SSS)的新型区间值p,q直觉模糊(IVPQ-ROF)多属性群决策(MAGDM)方法。本研究主要包含两个研究点:(1)处理属性之间的相互关系;(2)描述决策者(DM)的心理状态和风险态度。对于第一个研究点,我们引入了区间值p,q直觉模糊集(IVPQ-ROFSs)的阿基米德运算规则,然后定义了广义区间值p,q直觉模糊麦克劳林对称均值(GIVPQ-ROFMSM)算子和广义区间值p,q直觉模糊加权麦克劳林对称均值(GIVPQ-ROFWMSM)算子,以反映属性之间的相关性。对于第二个研究点,我们基于IVPQ-ROFSs的投影引入了正理想度(PID)和负理想度(NID),以及改进的后悔理论。它们都考虑了最佳备选方案和最差备选方案,从而反映DM的心理状态和风险态度。最后,给出了一个SSS问题以证明所设计方法的有效性。我们还进行了敏感性分析和对比分析,以进一步证明所提方法的合理性和有效性。