Suppr超能文献

作为动态系统的晶态:用于[NiFe]氢化酶的电化学控制红外显微光谱法

The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase.

作者信息

Ash Philip A, Kendall-Price Sophie E T, Evans Rhiannon M, Carr Stephen B, Brasnett Amelia R, Morra Simone, Rowbotham Jack S, Hidalgo Ricardo, Healy Adam J, Cinque Gianfelice, Frogley Mark D, Armstrong Fraser A, Vincent Kylie A

机构信息

Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK

School of Chemistry, University of Leicester Leicester LE1 7RH UK.

出版信息

Chem Sci. 2021 Jun 3;12(39):12959-12970. doi: 10.1039/d1sc01734a. eCollection 2021 Oct 13.

Abstract

Controlled formation of catalytically-relevant states within crystals of complex metalloenzymes represents a significant challenge to structure-function studies. Here we show how electrochemical control over single crystals of [NiFe] hydrogenase 1 (Hyd1) from makes it possible to navigate through the full array of active site states previously observed in solution. Electrochemical control is combined with synchrotron infrared microspectroscopy, which enables us to measure high signal-to-noise IR spectra from a small area of crystal. The output reports on active site speciation the vibrational stretching band positions of the endogenous CO and CN ligands at the hydrogenase active site. Variation of pH further demonstrates how equilibria between catalytically-relevant protonation states can be deliberately perturbed in the crystals, generating a map of electrochemical potential and pH conditions which lead to enrichment of specific states. Comparison of in crystallo redox titrations with measurements in solution or of electrode-immobilised Hyd1 confirms the integrity of the proton transfer and redox environment around the active site of the enzyme in crystals. Slowed proton-transfer equilibria in the hydrogenase in crystallo reveals transitions which are only usually observable by ultrafast methods in solution. This study therefore demonstrates the possibilities of electrochemical control over single metalloenzyme crystals in stabilising specific states for further study, and extends mechanistic understanding of proton transfer during the [NiFe] hydrogenase catalytic cycle.

摘要

在复杂金属酶晶体中可控地形成与催化相关的状态,对结构 - 功能研究而言是一项重大挑战。在此,我们展示了如何通过电化学控制来自[具体来源未给出]的[NiFe]氢化酶1(Hyd1)单晶,从而能够遍历先前在溶液中观察到的所有活性位点状态。电化学控制与同步辐射红外显微光谱相结合,这使我们能够从小片晶体区域测量高信噪比的红外光谱。输出结果报告了活性位点的物种形成情况,即氢化酶活性位点处内源性CO和CN配体的振动伸缩带位置。pH值的变化进一步表明,如何在晶体中有意扰动与催化相关的质子化状态之间的平衡,生成一张电化学势和pH条件的图谱,这些条件会导致特定状态的富集。将晶体中的氧化还原滴定与溶液中的测量结果或固定在电极上的Hyd1进行比较,证实了晶体中酶活性位点周围质子转移和氧化还原环境的完整性。晶体中氢化酶中质子转移平衡的减慢揭示了一些转变,这些转变通常只有在溶液中通过超快方法才能观察到。因此,本研究展示了对单个金属酶晶体进行电化学控制以稳定特定状态以便进一步研究的可能性,并扩展了对[NiFe]氢化酶催化循环中质子转移机制的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ed/8514002/9ad7c69aea5e/d1sc01734a-s1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验