Suppr超能文献

用于定量分析浑浊介质中光吸收体的压缩感知时间分辨光谱仪。

Compressed sensing time-resolved spectrometer for quantification of light absorbers in turbid media.

作者信息

Ioussoufovitch Seva, Cohen David Jonathan Fulop, Milej Daniel, Diop Mamadou

机构信息

Western University, Faculty of Engineering, School of Biomedical Engineering, Collaborative Training Program in Musculoskeletal Health Research, Bone & Joint Institute, 1151 Richmond St., London, N6A 5C1, Canada.

Western University, Schulich School of Medicine & Dentistry, Department of Medical Biophysics, 1151 Richmond St., London, N6A 5C1, Canada.

出版信息

Biomed Opt Express. 2021 Sep 21;12(10):6442-6460. doi: 10.1364/BOE.433427. eCollection 2021 Oct 1.

Abstract

Time-resolved (TR) spectroscopy is well-suited to address the challenges of quantifying light absorbers in highly scattering media such as living tissue; however, current TR spectrometers are either based on expensive array detectors or rely on wavelength scanning. Here, we introduce a TR spectrometer architecture based on compressed sensing (CS) and time-correlated single-photon counting. Using both CS and basis scanning, we demonstrate that-in homogeneous and two-layer tissue-mimicking phantoms made of Intralipid and Indocyanine Green-the CS method agrees with or outperforms uncompressed approaches. Further, we illustrate the superior depth sensitivity of TR spectroscopy and highlight the potential of the device to quantify absorption changes in deeper (>1 cm) tissue layers.

摘要

时间分辨(TR)光谱非常适合解决量化诸如活体组织等高散射介质中光吸收体的挑战;然而,当前的TR光谱仪要么基于昂贵的阵列探测器,要么依赖于波长扫描。在此,我们介绍一种基于压缩感知(CS)和时间相关单光子计数的TR光谱仪架构。通过同时使用CS和基扫描,我们证明,在由脂质体和吲哚菁绿制成的均匀和两层组织模拟体模中,CS方法与未压缩方法一致或更优。此外,我们展示了TR光谱卓越的深度灵敏度,并突出了该设备量化更深(>1 cm)组织层中吸收变化的潜力。

相似文献

10
Frequency-domain lifetime measurements and sensing in highly scattering media.高散射介质中的频域寿命测量与传感
Sens Actuators B Chem. 1996 Jan 31;30(3):207-215. doi: 10.1016/0925-4005(96)80051-7.

本文引用的文献

8
Single pixel hyperspectral bioluminescence tomography based on compressive sensing.基于压缩感知的单像素高光谱生物发光断层扫描
Biomed Opt Express. 2019 Oct 7;10(11):5549-5564. doi: 10.1364/BOE.10.005549. eCollection 2019 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验