Suppr超能文献

轮廓分析:检测远亲相关蛋白。

Profile analysis: detection of distantly related proteins.

作者信息

Gribskov M, McLachlan A D, Eisenberg D

出版信息

Proc Natl Acad Sci U S A. 1987 Jul;84(13):4355-8. doi: 10.1073/pnas.84.13.4355.

Abstract

Profile analysis is a method for detecting distantly related proteins by sequence comparison. The basis for comparison is not only the customary Dayhoff mutational-distance matrix but also the results of structural studies and information implicit in the alignments of the sequences of families of similar proteins. This information is expressed in a position-specific scoring table (profile), which is created from a group of sequences previously aligned by structural or sequence similarity. The similarity of any other sequence (target) to the group of aligned sequences (probe) can be tested by comparing the target to the profile using dynamic programming algorithms. The profile method differs in two major respects from methods of sequence comparison in common use: (i) Any number of known sequences can be used to construct the profile, allowing more information to be used in the testing of the target than is possible with pairwise alignment methods. (ii) The profile includes the penalties for insertion or deletion at each position, which allow one to include the probe secondary structure in the testing scheme. Tests with globin and immunoglobulin sequences show that profile analysis can distinguish all members of these families from all other sequences in a database containing 3800 protein sequences.

摘要

轮廓分析是一种通过序列比较来检测远缘相关蛋白质的方法。比较的基础不仅是传统的戴霍夫突变距离矩阵,还包括结构研究的结果以及相似蛋白质家族序列比对中隐含的信息。这些信息以位置特异性评分表(轮廓)表示,该表由一组先前通过结构或序列相似性比对的序列创建。通过使用动态规划算法将目标序列与轮廓进行比较,可以测试任何其他序列(目标序列)与比对序列组(探针序列)的相似性。轮廓方法在两个主要方面与常用的序列比较方法不同:(i)可以使用任意数量的已知序列来构建轮廓,与两两比对方法相比,这使得在测试目标序列时可以使用更多信息。(ii)轮廓包括每个位置插入或缺失的罚分,这使得可以将探针二级结构纳入测试方案。对珠蛋白和免疫球蛋白序列的测试表明,轮廓分析能够在一个包含3800个蛋白质序列的数据库中,将这些家族的所有成员与所有其他序列区分开来。

相似文献

1
Profile analysis: detection of distantly related proteins.轮廓分析:检测远亲相关蛋白。
Proc Natl Acad Sci U S A. 1987 Jul;84(13):4355-8. doi: 10.1073/pnas.84.13.4355.
3
Using CLUSTAL for multiple sequence alignments.使用CLUSTAL进行多序列比对。
Methods Enzymol. 1996;266:383-402. doi: 10.1016/s0076-6879(96)66024-8.
7
Improved tools for biological sequence comparison.用于生物序列比较的改进工具。
Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444-8. doi: 10.1073/pnas.85.8.2444.

引用本文的文献

2
Ultrafast and ultralarge multiple sequence alignments using TWILIGHT.使用TWILIGHT进行超快速和超大的多序列比对。
Bioinformatics. 2025 Jul 1;41(Supplement_1):i332-i341. doi: 10.1093/bioinformatics/btaf212.
3
NEAR: neural embeddings for amino acid relationships.NEAR:用于氨基酸关系的神经嵌入
Bioinformatics. 2025 Jul 1;41(Supplement_1):i449-i457. doi: 10.1093/bioinformatics/btaf198.
7
NEAR: Neural Embeddings for Amino acid Relationships.NEAR:用于氨基酸关系的神经嵌入
bioRxiv. 2025 Apr 9:2024.01.25.577287. doi: 10.1101/2024.01.25.577287.

本文引用的文献

6
Analysis of gene duplication repeats in the myosin rod.肌球蛋白杆状区基因重复序列分析
J Mol Biol. 1983 Sep 5;169(1):15-30. doi: 10.1016/s0022-2836(83)80173-9.
8
Sequence comparison by exponentially-damped alignment.通过指数衰减比对进行序列比较。
Nucleic Acids Res. 1984 Jan 11;12(1 Pt 2):457-64. doi: 10.1093/nar/12.1part2.457.
9
A comprehensive set of sequence analysis programs for the VAX.一套适用于VAX的综合序列分析程序。
Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387-95. doi: 10.1093/nar/12.1part1.387.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验