Suppr超能文献

神经球显微图像中神经细胞的可靠识别与定量分析。

Reliable identification and quantification of neural cells in microscopic images of neurospheres.

作者信息

Förster Nils, Butke Joshua, Keßel Hagen Eike, Bendt Farina, Pahl Melanie, Li Lu, Fan Xiaohui, Leung Ping-Chung, Klose Jördis, Masjosthusmann Stefan, Fritsche Ellen, Mosig Axel

机构信息

Department of Bioinformatics, Center for Protein Diagnostics, Ruhr-University Bochum, Gesundheitscampus 4, Bochum, Germany.

Bioinformatics, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstr 150, Bochum, Germany.

出版信息

Cytometry A. 2022 May;101(5):411-422. doi: 10.1002/cyto.a.24514. Epub 2021 Nov 19.

Abstract

Neurosphere cultures consisting of primary human neural stem/progenitor cells (hNPC) are used for studying the effects of substances on early neurodevelopmental processes in vitro. Differentiating hNPCs migrate and differentiate into radial glia, neurons, astrocytes, and oligodendrocytes upon plating on a suitable extracellular matrix and thus model processes of early neural development. In order to characterize alterations in hNPC development, it is thus an essential task to reliably identify the cell type of each migrated cell in the migration area of a neurosphere. To this end, we introduce and validate a deep learning approach for identifying and quantifying cell types in microscopic images of differentiated hNPC. As we demonstrate, our approach performs with high accuracy and is robust against typical potential confounders. We demonstrate that our deep learning approach reproduces the dose responses of well-established developmental neurotoxic compounds and controls, indicating its potential in medium or high throughput in vitro screening studies. Hence, our approach can be used for studying compound effects on neural differentiation processes in an automated and unbiased process.

摘要

由原代人神经干细胞/祖细胞(hNPC)组成的神经球培养物用于在体外研究物质对早期神经发育过程的影响。将分化的hNPC接种在合适的细胞外基质上时,它们会迁移并分化为放射状胶质细胞、神经元、星形胶质细胞和少突胶质细胞,从而模拟早期神经发育过程。为了表征hNPC发育中的变化,因此一项重要任务是在神经球的迁移区域中可靠地识别每个迁移细胞的细胞类型。为此,我们引入并验证了一种深度学习方法,用于识别和量化分化的hNPC微观图像中的细胞类型。正如我们所证明的,我们的方法具有很高的准确性,并且对典型的潜在混杂因素具有鲁棒性。我们证明,我们的深度学习方法再现了成熟的发育性神经毒性化合物和对照的剂量反应,表明其在中高通量体外筛选研究中的潜力。因此,我们的方法可用于以自动化且无偏倚的过程研究化合物对神经分化过程的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验