Suppr超能文献

通过深度强化学习和约束规划学习解决三维装箱问题

Learning to Solve 3-D Bin Packing Problem via Deep Reinforcement Learning and Constraint Programming.

作者信息

Jiang Yuan, Cao Zhiguang, Zhang Jie

出版信息

IEEE Trans Cybern. 2023 May;53(5):2864-2875. doi: 10.1109/TCYB.2021.3121542. Epub 2023 Apr 21.

Abstract

Recently, there is a growing attention on applying deep reinforcement learning (DRL) to solve the 3-D bin packing problem (3-D BPP). However, due to the relatively less informative yet computationally heavy encoder, and considerably large action space inherent to the 3-D BPP, existing DRL methods are only able to handle up to 50 boxes. In this article, we propose to alleviate this issue via a DRL agent, which sequentially addresses three subtasks of sequence, orientation, and position, respectively. Specifically, we exploit a multimodal encoder, where a sparse attention subencoder embeds the box state to mitigate the computation while learning the packing policy, and a convolutional neural network subencoder embeds the view state to produce auxiliary spatial representation. We also leverage an action representation learning in the decoder to cope with the large action space of the position subtask. Besides, we integrate the proposed DRL agent into constraint programming (CP) to further improve the solution quality iteratively by exploiting the powerful search framework in CP. The experiments show that both the sole DRL and hybrid methods enable the agent to solve large-scale instances of 120 boxes or more. Moreover, they both could deliver superior performance against the baselines on instances of various scales.

摘要

最近,将深度强化学习(DRL)应用于解决三维装箱问题(3-D BPP)受到了越来越多的关注。然而,由于编码器信息相对较少但计算量较大,以及3-D BPP固有的相当大的动作空间,现有的DRL方法只能处理最多50个箱子。在本文中,我们提出通过一个DRL智能体来缓解这个问题,该智能体依次分别处理顺序、方向和位置这三个子任务。具体来说,我们利用一个多模态编码器,其中一个稀疏注意力子编码器在学习装箱策略时嵌入箱子状态以减轻计算量,一个卷积神经网络子编码器嵌入视图状态以生成辅助空间表示。我们还在解码器中利用动作表示学习来处理位置子任务的大动作空间。此外,我们将所提出的DRL智能体集成到约束编程(CP)中,通过利用CP中强大的搜索框架来迭代地进一步提高求解质量。实验表明,单独的DRL方法和混合方法都能使智能体解决120个或更多箱子的大规模实例。此外,在各种规模的实例上,它们相对于基线都能提供卓越的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验