Suppr超能文献

羟甲基胞嘧啶表观遗传特征对 DNA 结构和功能的影响。

The Impact of the HydroxyMethylCytosine epigenetic signature on DNA structure and function.

机构信息

Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain.

Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República (UdelaR), Salto, Uruguay.

出版信息

PLoS Comput Biol. 2021 Nov 8;17(11):e1009547. doi: 10.1371/journal.pcbi.1009547. eCollection 2021 Nov.

Abstract

We present a comprehensive, experimental and theoretical study of the impact of 5-hydroxymethylation of DNA cytosine. Using molecular dynamics, biophysical experiments and NMR spectroscopy, we found that Ten-Eleven translocation (TET) dioxygenases generate an epigenetic variant with structural and physical properties similar to those of 5-methylcytosine. Experiments and simulations demonstrate that 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC) generally lead to stiffer DNA than normal cytosine, with poorer circularization efficiencies and lower ability to form nucleosomes. In particular, we can rule out the hypothesis that hydroxymethylation reverts to unmodified cytosine physical properties, as hmC is even more rigid than mC. Thus, we do not expect dramatic changes in the chromatin structure induced by differences in physical properties between d(mCpG) and d(hmCpG). Conversely, our simulations suggest that methylated-DNA binding domains (MBDs), associated with repression activities, are sensitive to the substitution d(mCpG) ➔ d(hmCpG), while MBD3 which has a dual activation/repression activity is not sensitive to the d(mCpG) d(hmCpG) change. Overall, while gene activity changes due to cytosine methylation are the result of the combination of stiffness-related chromatin reorganization and MBD binding, those associated to 5-hydroxylation of methylcytosine could be explained by a change in the balance of repression/activation pathways related to differential MBD binding.

摘要

我们对 DNA 胞嘧啶 5-羟甲基化的影响进行了全面的实验和理论研究。通过分子动力学、生物物理实验和 NMR 光谱学,我们发现 Ten-Eleven 易位(TET)双加氧酶生成了一种具有与 5-甲基胞嘧啶相似结构和物理性质的表观遗传变体。实验和模拟表明,5-甲基胞嘧啶(mC)和 5-羟甲基胞嘧啶(hmC)通常使 DNA 比正常胞嘧啶更僵硬,其环化效率更低,形成核小体的能力更低。特别是,我们可以排除羟甲基化恢复为未修饰胞嘧啶物理性质的假设,因为 hmC 比 mC 更僵硬。因此,我们预计 d(mCpG)和 d(hmCpG)之间物理性质的差异不会引起染色质结构的剧烈变化。相反,我们的模拟表明,与抑制活性相关的甲基化 DNA 结合域(MBD)对 d(mCpG) ➔ d(hmCpG)的取代敏感,而具有双重激活/抑制活性的 MBD3 对 d(mCpG) d(hmCpG)的变化不敏感。总的来说,虽然由于胞嘧啶甲基化导致的基因活性变化是由于与 MBD 结合相关的刚性相关染色质重排的组合,但那些与甲基胞嘧啶的 5-羟化相关的变化可能可以通过与差异 MBD 结合相关的抑制/激活途径的平衡变化来解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3dbf/8601608/82037b858e53/pcbi.1009547.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验