Suppr超能文献

热还原氧化石墨烯增强了自呼吸阴极原位产生羟基自由基的能力及电化学高级氧化性能。

Thermal reduced graphene oxide enhanced in-situ HO generation and electrochemical advanced oxidation performance of air-breathing cathode.

作者信息

Li Wen, Feng Yujie, An Jingkun, Yunfei Li, Zhao Qian, Liao Chengmei, Wang Xin, Liu Jia, Li Nan

机构信息

School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China.

School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, China.

出版信息

Environ Res. 2022 Mar;204(Pt C):112327. doi: 10.1016/j.envres.2021.112327. Epub 2021 Nov 5.

Abstract

Developing highly efficient catalysts with high ORR activity and HO selectivity is an important challenge for producing HO through 2e oxygen reduction reaction (ORR). In this work, we tuned the reduction degree of graphene oxide by controlling reducing temperature and prepared graphite-TRGO hybrid air breathing cathodes (ABCs). The HO production rate of TRGO-1100 (with highest reduction degree) modified ABC exhibits highest HO generation rate of 20.4 ± 0.8 mg/cm/h and current efficiency of 94 ± 2%. The charge transfer resistance of TRGO-1100 decreases by 2.5-fold compared with pure graphite cathode. Unreduced GO shows high HO selectivity and low ORR activity, while TRGO shows lower HO selectivity but higher ORR activity. Though the 2e ORR selectivity of TRGO decreased TRGO with all reduction degrees, the HO production increased in all forming electrodes. Superior performance of TRGO modified ABCs is attributed to high oxygen adsorption and low charge transfer resistance. TRGO possesses super-hydrophobicity and large surface area for oxygen adsorption. Besides, TRGO provides abundant electrochemically active sites to facilitate the electron transfer and formed more mesopores for HO release. Electro-Fenton using TRGO-1100-ABC exhibited great performance for Persistent Organic Pollutants (POPs) degradation, which removed 66% of tetracycline in 5 min.

摘要

开发具有高氧还原反应(ORR)活性和过氧化氢(HO)选择性的高效催化剂是通过2e氧还原反应生产HO面临的一项重要挑战。在这项工作中,我们通过控制还原温度来调节氧化石墨烯的还原程度,并制备了石墨-热还原氧化石墨烯混合自呼吸阴极(ABCs)。经TRGO-1100(还原程度最高)修饰的ABC的HO生成速率最高,为20.4±0.8mg/cm/h,电流效率为94±2%。与纯石墨阴极相比,TRGO-1100的电荷转移电阻降低了2.5倍。未还原的氧化石墨烯表现出高HO选择性和低ORR活性,而热还原氧化石墨烯表现出较低的HO选择性但较高的ORR活性。尽管所有还原程度的热还原氧化石墨烯的2e ORR选择性均降低,但在所有形成的电极中HO生成量均增加。热还原氧化石墨烯修饰的ABC的优异性能归因于高氧吸附和低电荷转移电阻。热还原氧化石墨烯具有超疏水性和用于氧吸附的大表面积。此外,热还原氧化石墨烯提供了丰富的电化学活性位点以促进电子转移,并形成了更多用于HO释放的中孔。使用TRGO-1100-ABC的电芬顿法对持久性有机污染物(POPs)降解表现出优异性能,在5分钟内去除了66%的四环素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验