Suppr超能文献

CYP2C9 和 3A4 在二苯胺 NSAIDs 的生物活化和解毒中扮演相反的角色。

CYP2C9 and 3A4 play opposing roles in bioactivation and detoxification of diphenylamine NSAIDs.

机构信息

Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.

Independent Researcher, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.

出版信息

Biochem Pharmacol. 2021 Dec;194:114824. doi: 10.1016/j.bcp.2021.114824. Epub 2021 Nov 5.

Abstract

Diphenylamine NSAIDs are taken frequently for chronic pain conditions, yet their use may potentiate hepatotoxicity risks through poorly characterized metabolic mechanisms. Our previous work revealed that seven marketed or withdrawn diphenylamine NSAIDs undergo bioactivation into quinone-species metabolites, whose reaction specificities depended on halogenation and the type of acidic group on the diphenylamine. Herein, we identified cytochromes P450 responsible for those bioactivations, determined reaction specificities, and estimated relative contributions of enzymes to overall hepatic bioactivations and detoxifications. A qualitative activity screen revealed CYP2C8, 2C9, 2C19, and 3A4 played roles in drug bioactivation. Subsequent steady-state studies with recombinant CYPs recapitulated the importance of halogenation and acidic group type on bioactivations but importantly, showed patterns unique to each CYP. CYP2C9, 2C19 and 3A4 bioactivated all NSAIDs with CYP2C9 dominating all possible bioactivation pathways. For each CYP, specificities for overall oxidative metabolism were not impacted significantly by differences in NSAID structures but the values themselves differed among the enzymes such that CYP2C9 and 3A4 were more efficient than others. When considering hepatic CYP abundance, CYP2C9 almost exclusively accounted for diphenylamine NSAID bioactivations, whereas CYP3A4 provided a critical counterbalance favoring their overall detoxification. Preference for either outcome would depend on molecular structures favoring metabolism by the CYPs as well as the influence of clinical factors altering their expression and/or activity. While focused on NSAIDs, these findings have broader implications on bioactivation risks given the expansion of the diphenylamine scaffold to other drug classes such as targeted cancer therapeutics.

摘要

二苯胺类 NSAIDs 常用于慢性疼痛病症,但它们的使用可能通过特征描述不佳的代谢机制增加肝毒性风险。我们之前的工作表明,七种市售或已撤市的二苯胺类 NSAIDs 会被生物转化为醌类代谢物,其反应特异性取决于卤化和二苯胺上酸性基团的类型。在此,我们确定了负责这些生物转化的细胞色素 P450,确定了反应特异性,并估计了酶对整体肝生物转化和解毒的相对贡献。定性活性筛选显示 CYP2C8、2C9、2C19 和 3A4 在药物生物转化中起作用。随后用重组 CYP 进行的稳态研究再现了卤化和酸性基团类型对生物转化的重要性,但重要的是,显示了每个 CYP 独特的模式。CYP2C9、2C19 和 3A4 可生物转化所有 NSAIDs,其中 CYP2C9 主导所有可能的生物转化途径。对于每种 CYP,其 NSAID 结构差异对整体氧化代谢的特异性没有显著影响,但这些值在酶之间存在差异,使得 CYP2C9 和 3A4 的效率高于其他酶。考虑到肝 CYP 的丰度,CYP2C9 几乎完全负责二苯胺类 NSAIDs 的生物转化,而 CYP3A4 提供了有利于其整体解毒的关键平衡。哪种结果占优势将取决于有利于 CYP 代谢的分子结构以及改变其表达和/或活性的临床因素的影响。虽然这些发现侧重于 NSAIDs,但鉴于二苯胺支架已扩展到其他药物类别,如靶向癌症治疗药物,这些发现对生物转化风险具有更广泛的意义。

相似文献

2
Impacts of diphenylamine NSAID halogenation on bioactivation risks.二苯胺类 NSAID 卤化对生物活化风险的影响。
Toxicology. 2021 Jun 30;458:152832. doi: 10.1016/j.tox.2021.152832. Epub 2021 Jun 6.

本文引用的文献

1
Impacts of diphenylamine NSAID halogenation on bioactivation risks.二苯胺类 NSAID 卤化对生物活化风险的影响。
Toxicology. 2021 Jun 30;458:152832. doi: 10.1016/j.tox.2021.152832. Epub 2021 Jun 6.
6
Acyl glucuronide reactivity in perspective.酰基葡萄糖醛酸苷反应性的透视。
Drug Discov Today. 2020 Sep;25(9):1639-1650. doi: 10.1016/j.drudis.2020.07.009. Epub 2020 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验