Suppr超能文献

改进水文模型中对森林的表达。

Improving the representation of forests in hydrological models.

机构信息

School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA.

Water Institute, University of Florida, Gainesville, FL 32611, USA.

出版信息

Sci Total Environ. 2022 Mar 15;812:151425. doi: 10.1016/j.scitotenv.2021.151425. Epub 2021 Nov 5.

Abstract

Forests play a critical role in the hydrologic cycle, impacting the surface and groundwater dynamics of watersheds through transpiration, interception, shading, and modification of the atmospheric boundary layer. It is therefore critical that forest dynamics are adequately represented in watershed models, such as the widely applied Soil and Water Assessment Tool (SWAT). SWAT's default parameterization generally produces unrealistic forest growth predictions, which we address here through an improved representation of forest dynamics using species-specific re-parameterizations. We applied this methodology to the two dominant pine species in the southeastern U.S., loblolly pine (Pinus taeda L.) and slash pine (Pinus elliotti). Specifically, we replaced unrealistic parameter values related to tree growth with physically meaningful parameters derived from publicly available remote-sensing products, field measurements, published literature, and expert knowledge. Outputs of the default and re-parameterized models were compared at four pine plantation sites across a range of management, soil, and climate conditions. Results were validated against MODIS-derived leaf area index (LAI) and evapotranspiration (ET), as well as field observations of total biomass. The re-parameterized model outperformed the default model in simulating LAI, biomass accumulation, and ET at all sites. The two parametrizations also resulted in substantially different mean annual water budgets for all sites, with reductions in water yield ranging from 13 to 45% under the new parameterization, highlighting the importance of properly parameterizing forest dynamics in watershed models. Importantly, our re-parameterization methodology does not require alteration to the SWAT code, allowing it to be readily adapted and applied in ongoing and future watershed modeling studies.

摘要

森林在水文循环中起着至关重要的作用,通过蒸腾作用、截留、遮荫和改变大气边界层,影响流域的地表水和地下水动态。因此,森林动态在流域模型中得到充分体现至关重要,例如广泛应用的土壤和水评估工具 (SWAT)。SWAT 的默认参数化通常会产生不切实际的森林生长预测,我们通过使用特定于物种的重新参数化来改进森林动态的表示来解决这个问题。我们将这种方法应用于美国东南部的两种主要松树,火炬松 (Pinus taeda L.) 和湿地松 (Pinus elliottii)。具体来说,我们用来自公开遥感产品、实地测量、已发表文献和专家知识的物理上有意义的参数替换了与树木生长相关的不切实际的参数值。在一系列管理、土壤和气候条件下,比较了默认模型和重新参数化模型在四个松林种植场的输出。结果通过 MODIS 衍生的叶面积指数 (LAI) 和蒸散量 (ET) 以及总生物量的实地观测进行验证。重新参数化模型在所有站点的 LAI、生物量积累和 ET 模拟方面均优于默认模型。两种参数化方法还导致所有站点的年平均水量预算有很大差异,新参数化下的水量产量减少了 13%至 45%,突出了在流域模型中正确参数化森林动态的重要性。重要的是,我们的重新参数化方法不需要修改 SWAT 代码,允许它在正在进行和未来的流域建模研究中进行修改和应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验