Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA.
Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA.
Spectrochim Acta A Mol Biomol Spectrosc. 2022 Feb 15;267(Pt 2):120550. doi: 10.1016/j.saa.2021.120550. Epub 2021 Oct 28.
Metal-organic frameworks (MOFs) are advanced highly porous coordination polymers of high interest to separations, environmental remediation, catalysis, and biomedicine. While many MOFs are unstable in water and aqueous solutions, aluminum MOFs (Al-MOFs) offer an unprecedented stability. First, we synthesize unusual highly hygroscopic Al-MOF MIL-160(Al), purify it and assign FTIR peaks to specific groups as potential water binding sites. Further, we introduce a novel method of in-situ time-dependent ATR-FTIR spectroscopy to detect specific binding sites in MIL-160(Al) and investigate the progress of reaction. Specifically, we combine in-situ time-dependent ATR-FTIR spectroscopy with using water as "spectroscopic probe" to determine binding sites in MIL-160(Al) and their evolution during the reaction. The in-situ time-dependent ATR-FTIR spectra provide evidence of water bonding to: the μ-OH group, the carboxylate anion COO in 2,5-FDCA linker, oxygen atom in the furan ring of the linker, and the C-C and C-H bonds of the furan ring of the linker. Then, we conduct mechanistic and kinetic study of sorption of water vapor on MIL-160(Al) in air using the combination of two complementary in-situ time-dependent methods: the ATR-FTIR spectroscopy and gravimetric analysis. Water vapor sorption on MIL-160(Al) results in the solid-state adsorption complex with up to four water molecules per unit of MIL-160(Al). Chemical kinetics of water sorption on MIL-160(Al) follows a pseudo-first order rate law and it is consistent with dynamics and timescale revealed by in-situ time-dependent ATR-FTIR. The combination of two in-situ time-dependent methods, the ATR-FTIR spectroscopy and gravimetry, forms a new powerful experimental approach to facilely study mechanisms, stoichiometry and chemical kinetics of various solid-gas reactions in the ambient and controlled environments.
金属有机骨架(MOFs)是一类高度多孔的配位聚合物,在分离、环境修复、催化和生物医学等领域具有重要应用。虽然许多 MOFs 在水中不稳定,但铝 MOFs(Al-MOFs)提供了前所未有的稳定性。首先,我们合成了一种不寻常的高吸湿性 Al-MOF MIL-160(Al),对其进行纯化,并将 FTIR 峰分配给特定基团,作为潜在的水结合位点。进一步,我们引入了一种新的原位时间分辨衰减全反射傅里叶变换红外光谱(ATR-FTIR)方法,用于检测 MIL-160(Al)中的特定结合位点,并研究反应进程。具体来说,我们将原位时间分辨 ATR-FTIR 光谱与使用水作为“光谱探针”相结合,以确定 MIL-160(Al)中的结合位点及其在反应过程中的演变。原位时间分辨 ATR-FTIR 谱提供了证据表明水与 μ-OH 基团、2,5-FDCA 连接体中的羧酸盐阴离子 COO、连接体中呋喃环上的氧原子以及连接体中呋喃环上的 C-C 和 C-H 键结合。然后,我们使用两种互补的原位时间分辨方法:ATR-FTIR 光谱和重量分析,对 MIL-160(Al)在空气中吸附水蒸气的机理和动力学进行了研究。MIL-160(Al)对水蒸气的吸附导致形成具有多达四个水分子/单位 MIL-160(Al)的固态吸附复合物。MIL-160(Al)对水的吸附化学动力学遵循准一级速率定律,与原位时间分辨 ATR-FTIR 揭示的动力学和时间尺度一致。ATR-FTIR 光谱和重量分析两种原位时间分辨方法的结合,为在环境和受控环境中简便地研究各种固-气反应的机理、化学计量和化学动力学提供了一种新的强大实验方法。