Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India.
Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India.
J Colloid Interface Sci. 2022 Jan 15;606(Pt 2):2024-2037. doi: 10.1016/j.jcis.2021.09.173. Epub 2021 Sep 29.
The remediation of non-reactive phosphate pollutants in the aquatic system is essential for protecting the ecological niche. In this work, a highly robust protein nanoparticles networked rare-earth metal carbonate-grafted bio-composite membrane (abbreviated as REMC) was fabricated via chemical crosslinking of three-dimensional (3D) hierarchical lanthanum carbonate (mREM) and casein nanoparticles (CsNPs) for selective rejection of non-reactive phosphates. The main components of the REMC membrane are mREM and CsNPs, which were prepared via SDS/CTAB templated homogeneous precipitation and the coacervation/desolvation hybrid method, respectively. The active lanthanum ion (La) on the 3D spherulitic surface of mREM exhibited excellent phosphate adsorption capacity (maximum adsorption capacity was 358 mg.g) across a wide pH range and in a multi-ionic environment. A series of batch testing and characterizations revealed that the active La and dominating phosphate centers in the REMC membrane framework enable non-enzymatic phosphatase-like activity, cleaving the phosphate ester bond of organic phosphates and releasing free phosphate anions. These released phosphate ions are retained in the REMC membrane via an ion exchange mechanism, where they contribute to improved phosphate removal capacities. Furthermore, CsNPs have a dual function in the membrane, acting as a matrix in the REMC membrane framework and contributing to phosphate ion sequestrations in a synergistic manner. The catalysis of para-nitrophenyl phosphates (pNPP) to paranitrophenol (pNP) in a sequential dephosphorylation by REMC offers an estimate of reaction kinetics and elucidates the underlying mechanism of improved phosphate selectivity in a multi-ionic environment. Furthermore, phosphate specificity, homogeneous binding capacity, reusability, and visual observation of REMC membrane saturation binding direct it's useful economic, industrial applications in aqueous phosphate contaminant removal, which could be beneficial for the active recovery of the aquatic ecosystem.
在水生系统中修复非反应性磷酸盐污染物对于保护生态位至关重要。在这项工作中,通过化学交联三维(3D)分层碳酸镧(mREM)和酪蛋白纳米粒子(CsNPs),制备了一种高度稳健的蛋白质纳米粒子网络稀土金属碳酸盐接枝生物复合膜(简称 REMC),用于选择性去除非反应性磷酸盐。REMC 膜的主要成分是 mREM 和 CsNPs,分别通过 SDS/CTAB 模板均相沉淀和共凝聚/去溶剂混合方法制备。mREM 3D 球晶表面上的活性镧离子(La)在宽 pH 范围和多离子环境中表现出优异的磷酸盐吸附能力(最大吸附容量为 358mg.g)。一系列批处理测试和表征表明,REMC 膜骨架中的活性 La 和主要的磷酸盐中心赋予了非酶类磷酸酶样活性,可切割有机磷酸盐的磷酸酯键并释放游离的磷酸盐阴离子。这些释放的磷酸盐离子通过离子交换机制保留在 REMC 膜中,从而提高了磷酸盐去除能力。此外,CsNPs 在膜中具有双重功能,既作为 REMC 膜骨架的基质,又以协同方式促进磷酸盐离子的螯合。通过 REMC 对对硝基苯磷酸酯(pNPP)的顺序去磷酸化作用,将对硝基苯酚(pNP)转化为对硝基苯酚,这为反应动力学提供了估计,并阐明了在多离子环境中提高磷酸盐选择性的潜在机制。此外,REMC 膜对磷酸盐的特异性、均相结合能力、可重复使用性和视觉观察到的饱和结合,直接指向其在去除水中磷酸盐污染物方面具有有用的经济、工业应用潜力,这将有助于水生态系统的活性恢复。