Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
Chitose Laboratory Corp., Biotechnology Research Center, Miyamae-ku, Kawasaki, Kanagawa, Japan.
Biosci Biotechnol Biochem. 2021 Dec 22;86(1):125-134. doi: 10.1093/bbb/zbab188.
Several industries require getting information of products as soon as possible during fermentation. However, the trade-off between sensing speed and data quantity presents challenges for forecasting fermentation product yields. In this study, we tried to develop AI models to forecast ethanol yields in yeast fermentation cultures, using cell morphological data. Our platform involves the quick acquisition of yeast morphological images using a nonstaining protocol, extraction of high-dimensional morphological data using image processing software, and forecasting of ethanol yields via supervised machine learning. We found that the neural network algorithm produced the best performance, which had a coefficient of determination of >0.9 even at 30 and 60 min in the future. The model was validated using test data collected using the CalMorph-PC(10) system, which enables rapid image acquisition within 10 min. AI-based forecasting of product yields based on cell morphology will facilitate the management and stable production of desired biocommodities.
在发酵过程中,有几个行业需要尽快获取产品信息。然而,在感测速度和数据量之间存在权衡,这给预测发酵产品产量带来了挑战。在这项研究中,我们尝试使用细胞形态数据开发人工智能模型来预测酵母发酵培养物中的乙醇产量。我们的平台涉及使用非染色方案快速获取酵母形态图像、使用图像处理软件提取高维形态数据以及通过有监督机器学习进行乙醇产量预测。我们发现,神经网络算法的性能最好,即使在未来 30 分钟和 60 分钟时,其决定系数也超过了 0.9。该模型使用 CalMorph-PC(10)系统收集的测试数据进行了验证,该系统可以在 10 分钟内快速获取图像。基于细胞形态的基于人工智能的产品产量预测将有助于管理和稳定生产所需的生物商品。