Suppr超能文献

通过二进制增强剪枝实现的极稀疏网络用于快速图像分类

Extremely Sparse Networks via Binary Augmented Pruning for Fast Image Classification.

作者信息

Wang Peisong, Li Fanrong, Li Gang, Cheng Jian

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Aug;34(8):4167-4180. doi: 10.1109/TNNLS.2021.3120409. Epub 2023 Aug 4.

Abstract

Network pruning and binarization have been demonstrated to be effective in neural network accelerator design for high speed and energy efficiency. However, most existing pruning approaches achieve a poor tradeoff between accuracy and efficiency, which on the other hand, has limited the progress of neural network accelerators. At the same time, binary networks are highly efficient, however, a large accuracy gap exists between binary networks and their full-precision counterparts. In this article, we investigate the merits of extremely sparse networks with binary connections for image classification through software-hardware codesign. More specifically, we first propose a binary augmented extremely pruning method that can achieve ~98% sparsity with small accuracy degradation. Then we design the hardware architecture based on the resulting sparse and binary networks, which extensively explores the benefits of extreme sparsity with negligible resource consumption introduced by binary branch. Experiments on large-scale ImageNet classification and field-programmable gate array (FPGA) demonstrate that the proposed software-hardware architecture can achieve a prominent tradeoff between accuracy and efficiency.

摘要

网络剪枝和二值化已被证明在用于高速和高能效的神经网络加速器设计中是有效的。然而,大多数现有的剪枝方法在精度和效率之间实现了较差的权衡,这在另一方面限制了神经网络加速器的发展。同时,二值网络效率很高,然而,二值网络与其全精度对应网络之间存在很大的精度差距。在本文中,我们通过软硬件协同设计研究具有二值连接的极稀疏网络在图像分类方面的优点。更具体地说,我们首先提出一种二值增强的极端剪枝方法,该方法可以在精度下降很小的情况下实现约98%的稀疏度。然后,我们基于所得的稀疏和二值网络设计硬件架构,该架构广泛探索了极端稀疏性的好处,同时由二值分支引入的资源消耗可忽略不计。在大规模ImageNet分类和现场可编程门阵列(FPGA)上的实验表明,所提出的软硬件架构可以在精度和效率之间实现显著的权衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验