Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden.
Department of Physics, Josip Juraj Strossmayer University of Osijek, 31000, Osijek, Croatia.
Angew Chem Int Ed Engl. 2022 Jan 21;61(4):e202113279. doi: 10.1002/anie.202113279. Epub 2021 Dec 3.
Condensation of DNA helices into hexagonally packed bundles and toroids represents an intriguing example of functional organization of biological macromolecules at the nanoscale. The condensation models are based on the unique polyelectrolyte features of DNA, however here we could reproduce a DNA-like condensation with supramolecular helices of small chiral molecules, thereby demonstrating that it is a more general phenomenon. We show that the bile salt sodium deoxycholate can form supramolecular helices upon interaction with oppositely charged polyelectrolytes of homopolymer or block copolymers. At higher order, a controlled hexagonal packing of the helices into DNA-like bundles and toroids could be accomplished. The results disclose unknown similarities between covalent and supramolecular non-covalent helical polyelectrolytes, which inspire visionary ideas of constructing supramolecular versions of biological macromolecules. As drug nanocarriers the polymer-bile salt superstructures would get advantage of a complex chirality at molecular and supramolecular levels, whose effect on the nanocarrier assisted drug efficiency is a still unexplored fascinating issue.
DNA 螺旋凝聚成六边形堆积束和环是生物大分子在纳米尺度上功能组织的一个有趣例子。这些凝聚模型基于 DNA 的独特聚电解质特性,但在这里,我们可以用小手性分子的超分子螺旋复制出类似于 DNA 的凝聚,从而证明这是一种更普遍的现象。我们表明,胆汁盐脱氧胆酸钠可以在与带相反电荷的同聚物或嵌段共聚物的聚电解质相互作用时形成超分子螺旋。在更高阶结构中,可以实现螺旋的可控六边形堆积成类似于 DNA 的束和环。这些结果揭示了共价和超分子非共价螺旋聚电解质之间未知的相似性,这激发了构建生物大分子的超分子版本的有远见的想法。作为药物纳米载体,聚合物-胆汁盐超结构将受益于分子和超分子水平上的复杂手性,其对纳米载体辅助药物效率的影响仍然是一个令人着迷的尚未探索的问题。